Vector bundles and projective modules

Type: Article

Publication Date: 1986-01-01

Citations: 20

DOI: https://doi.org/10.1090/s0002-9947-1986-0825734-3

Abstract

Serre and Swan showed that the category of vector bundles over a compact space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is equivalent to the category of finitely generated projective modules over the ring of continuous functions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, titled after the famous paper by Swan, this result is extended to an arbitrary topological space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Also the well-known homotopy classification of the vector bundles over compact <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> up to isomorphism is extended to arbitrary <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is shown that the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{K_0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-functor and the Witt group of the ring of continuous functions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> coincide, and they are homotopy-type invariants of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Projective modules as fiber bundles 1971 E. Graham Evans
+ PDF Chat Vector Bundles and Projective Modules 1986 L. N. Vaserstein
+ PDF Chat Vector bundles over finite 𝐶𝑊-complexes are algebraic 1973 Knud Lønsted
+ PDF Chat 𝐾₁ of projective 𝑟-spaces 1970 Leslie G. Roberts
+ PDF Chat Equivariant bundles and cohomology 1986 Andrzej Kozłowski
+ A note on sheaves without self-extensions on the projective 𝑛-space 2013 Dieter Happel
Dan Zacharia
+ PDF Chat Algebraic fiber bundles 1981 Steven E. Landsburg
+ PDF Chat On the existence of equivariant embeddings of principal bundles into vector bundles 1983 Vagn Lundsgaard Hansen
Jesper M. Møller
+ The Hom-spaces between projective functors 2001 Erik Backelin
+ PDF Chat Pontryagin classes of vector bundles over 𝐵𝑆𝑝(𝑛) 1973 Duane O’Neill
+ PDF Chat Vector bundles on log terminal varieties 1998 Massimiliano Mella
+ A note on principal parts on projective space and linear representations 2004 Helge Øystein Maakestad
+ PDF Chat Decomposing algebraic vector bundles on the projective line 1976 Charles C. Hanna
+ PDF Chat Projective modules over subrings of 𝑘[𝑋,𝑌] 1978 David F. Anderson
+ PDF Chat Bordism classes of vector bundles over real projective spaces 1993 Bruce F. Torrence
+ PDF Chat Projective normal flatness and Hilbert functions 1984 Ulrich Orbanz
Lorenzo Robbiano
+ Simple and projective correspondence functors 2021 Serge Bouc
Jacques Thévenaz
+ PDF Chat Projective modules 1976 S. Jøndrup
+ Projective normality of abelian varieties 2003 Jaya Nn Iyer
+ PDF Chat On spaces of maps between complex projective spaces 1984 Jesper M. Møller

Works That Cite This (20)

Action Title Year Authors
+ The Cuntz semigroup of some spaces of dimension at most two 2007 Leonel Robert
+ Classification of homomorphisms from $C_0(0,1]$ to a C*-algebra 2009 Leonel Robert
Luis Santiago
+ Projective freeness and Hermiteness of complex function algebras 2023 Alexander Brudnyi
Amol Sasane
+ Classification of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="normal">C</mml:mi><mml:mo>∗</mml:mo></mml:msup></mml:math>-homomorphisms from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msub><mml:mi>C</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">]</mml:mo></mml:… 2009 Leonel Robert
Luis Santiago
+ Topologically finitely generated Hilbert <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>C</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>X</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>-modules 2012 Ilja Gogić
+ PDF Chat Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds 2019 Hiroki Yagisita
+ PDF Chat Isospectral Deformations of Eguchi-Hanson Spaces as Nonunital Spectral Triples 2009 Chen Yang
+ On the global construction of modules over Fedosov deformation quantization algebra 2008 S. A. Pol'shin
+ References for Chapter VIII 2006 Tsit Yuen Lam
+ On K1-theory of the Euclidean space 1986 William P. Thurston
L. N. Vaserstein