The Equation ax 2 + by 2 + cz 2 = dxyz over Quadratic Imaginary Fields

Type: Article

Publication Date: 1998-03-01

Citations: 5

DOI: https://doi.org/10.1007/bf03322067

Locations

  • Resultate der Mathematik - View

Similar Works

Action Title Year Authors
+ On the solutions of $x^2= By^p+Cz^p$ and $2x^2= By^p+Cz^p$ over totally real fields 2023 Narasimha Kumar
Satyabrat Sahoo
+ The Diophantine equation \(x^4 + 2^ny^4 = 1\) in quadratic number fields 2021 Aobo Li Aobo Li
+ PDF Chat Integer-valued quadratic forms and quadratic Diophantine equations. 2006 Goro Shimura
+ PDF Chat On the solvability of the diophantine equation ax2+by2+cz2=0 in imaginary Euclidean quadratic fields 1952 Ove Hemer
+ On the Diophantine equation ax+ by= (a+ 2) z 2016 Takafumi Miyazaki
Alain Togbé
Pingzhi Yuan
+ Solutions in Rational Integers of the Equation 2aX4+2bY4=Z4 1986 保高 鈴木
+ ${\mathbb Q}$-curves, Hecke characters and some Diophantine equations II 2021 Ariel Pacetti
Lucas Villagra Torcomian
+ A note on the Diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$ 2021 Stefan Barańczuk
+ PDF Chat The Diophantine equation $x^4 + y^4 = 1$ in algebraic number fields 1968 L. J. Mordell
+ The integer solutions of the equation ax2 + by2 + cz2 = 0 in quadratic fields 1972 Kazimierz Szymiczek
+ PDF Chat Diophantine equations defined by binary quadratic forms over rational function fields 2020 Chang Lv
+ PDF Chat Some diophantine equations related to the quadratic form $ax^2+by^2$ 1975 Edward A. Bender
Norman P. Herzberg
+ Diophantine Equations in Algebraic Number Fields 1949 L. G. Peck
+ The Diophantine Equation X4+Y4=D2Z4 in Quadratic Fields. 2012 Melissa Emory
+ PDF Chat On the Diophantine equations 𝑑₁𝑥²+2^{2𝑚}𝑑₂=𝑦ⁿ and 𝑑₁𝑥²+𝑑₂=4𝑦ⁿ 1993 LE Mao-hua
+ The Diophantine equation $x^4\pm y^4=iz^2$ in Gaussian integers 2010 Filip Najman
+ Diophantine equation p2x4+3px2y2+y4=z2, p an odd prime 1975 T. N. Sinha
+ PDF Chat Quadratic Diophantine Equations in the Rational and Quadratic Fields 1942 Ivan Niven
+ PDF Chat Geometric Aspects to Diophantine Equations of the Form $x^2 + zxy + y^2 = M$ and $z$-Rings 2024 Chris Busenhart
+ PDF Chat On the Diophantine Equation $(x^2+k)(y^2+k)=(z^2+k)^2$ 2008 Maciej Ulas