A note on weighted Sobolev spaces, and regularity of commutators and layer potentials associated to the heat equation

Type: Article

Publication Date: 1993-01-01

Citations: 3

DOI: https://doi.org/10.1090/s0002-9939-1993-1137222-7

Abstract

We give a simplified proof of recent regularity results of Lewis and Murray, namely, that certain commutators, and the boundary single layer potential for the heat equation in domains in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R squared"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbb {R}^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with time dependent boundary, map <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into an appropriate homogeneous Sobolev space. The simplification is achieved by treating directly only the case <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p equals 2"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p = 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, but in a weighted setting.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A Note on Weighted Sobolev Spaces, and Regularity of Commutators and Layer Potentials Associated to the Heat Equation 1993 Steve Hofmann
+ PDF Chat The behavior of the heat operator on weighted Sobolev spaces 1998 G. N. Hile
Christopher Mawata
+ PDF Chat Regularity properties of commutators and layer potentials associated to the heat equation 1991 John L. Lewis
M. A. Murray
+ PDF Chat Variational problems in weighted Sobolev spaces on non-smooth domains 2010 Ana Maria Soane
Rouben Rostamian
+ The co-area formula for Sobolev mappings 2002 Jan Malý
David Swanson
William P. Ziemer
+ PDF Chat Uniform $L\sp 2$-weighted Sobolev inequalities 1991 Filippo Chiarenza
Alberto Ruiz
+ Sobolev inequality with non-uniformly degenerating gradient 2022 Farman Mamedov
Sara Monsurrò
+ PDF Chat Sobolev inequalities for weight spaces and supercontractivity 1976 Jay Rosen
+ PDF Chat Inequalities in the most simple Sobolev space and convolutions of 𝐿₂ functions with weights 1993 Saburou Saitoh
+ PDF Chat The Stefan problem with a convective boundary condition 1982 A. D. Solomon
Vasilios Alexiades
DW Wilson
+ Boundary value problems in Lipschitz domains for equations with lower order coefficients 2019 Georgios Sakellaris
+ PDF Chat Symmetry and Regularity of Solutions to the Weighted Hardy–Sobolev Type System 2015 Luís Salinas
Zhao Liu
Guozhen Lu
+ PDF Chat Weighted norm estimates for Sobolev spaces 1987 Martin Schechter
+ PDF Chat Regularity Properties of Commutators and Layer Potentials Associated to the Heat Equation 1991 John L. Lewis
Margaret A. M. MUrray
+ PDF Chat Heat kernels and Hardy spaces on non-tangentially accessible domains with applications to global regularity of inhomogeneous Dirichlet problems 2023 Sibei Yang
Dachun Yang
+ PDF Chat A surprising formula for Sobolev norms 2021 Haı̈m Brezis
Jean Van Schaftingen
Po‐Lam Yung
+ Two Weight Estimates for the Single Layer Potential on Lipschitz Surfaces with Small Lipschitz Constant 2014 Johan Thim
+ Two Weight Estimates for the Single Layer Potential on Lipschitz Surfaces with Small Lipschitz Constant 2014 Johan Thim
+ Characterization of multilinear multipliers in terms of Sobolev space regularity 2021 Loukas Grafakos
Bae Jun Park
+ PDF Chat Hölder-continuity of the solutions for operators which are a sum of squares of vector fields plus a potential 1994 Giovanna Citti
Giuseppe Di Fazio