A Note on Generalized Hardy-Sobolev Inequalities

Type: Article

Publication Date: 2013-01-08

Citations: 12

DOI: https://doi.org/10.1155/2013/784398

Abstract

We are concerned with finding a class of weight functions <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>g</mml:mi></mml:mrow></mml:math> so that the following generalized Hardy-Sobolev inequality holds: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:msub><mml:mo>∫</mml:mo><mml:mrow><mml:mi mathvariant="normal">Ω</mml:mi></mml:mrow></mml:msub><mml:mi>g</mml:mi><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>≤</mml:mo><mml:mi>C</mml:mi><mml:msub><mml:mo>∫</mml:mo><mml:mrow><mml:mi mathvariant="normal">Ω</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">|</mml:mo><mml:mo>∇</mml:mo><mml:mi>u</mml:mi><mml:msup><mml:mrow><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>,</mml:mo><mml:mi> </mml:mi><mml:mi>u</mml:mi><mml:mo>∈</mml:mo><mml:msubsup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="normal">Ω</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>, for some <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mi>C</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>0</mml:mn></mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi mathvariant="normal">Ω</mml:mi></mml:mrow></mml:math> is a bounded domain in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mrow><mml:msup><mml:mrow><mml:mi>ℝ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>. By making use of Muckenhoupt condition for the one-dimensional weighted Hardy inequalities, we identify a rearrangement invariant Banach function space so that the previous integral inequality holds for all weight functions in it. For weights in a subspace of this space, we show that the best constant in the previous inequality is attained. Our method gives an alternate way of proving the Moser-Trudinger embedding and its refinement due to Hansson.

Locations

  • International Journal of Analysis - View - PDF

Similar Works

Action Title Year Authors
+ A Note on the Sobolev and Gagliardo--Nirenberg Inequality when 𝑝 &gt; 𝑁 2020 Alessio Porretta
+ On a weighted inequality of Hardy type in spaces<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo>⋅</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msup></mml:math> 2008 Farman Mamedov
Aziz Harman
+ PDF Chat On further strengthened Hardy-Hilbert's inequality 2004 Zhongxue Lü
+ PDF Chat Extensions of Hardy-Littlewood inequalities 1993 Zengjian Lou
+ PDF Chat Symmetry and Regularity of Solutions to the Weighted Hardy–Sobolev Type System 2015 Luís Salinas
Zhao Liu
Guozhen Lu
+ A note on the Sobolev trace inequality 2021 Pak Tung Ho
+ A note on Hardy spaces and bounded linear operators 2017 Pablo Rocha
+ Hardy's inequality in power-type weighted <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo>⋅</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mo>∞</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:math> spaces 2007 R.A. Mashiyev
B. Çekiç
Farman Mamedov
S. Ogras
+ PDF Chat An extension of the Hardy-Littlewood inequality 1979 Man Kam Kwong
Anton Zettl
+ Hardy inequalities related to Grushin type operators 2003 Lorenzo D’Ambrosio
+ PDF Chat Three weights higher order Hardy type inequalities 2006 Aigerim Kalybay
Lars‐Erik Persson
+ PDF Chat A note on Hardy’s inequality 2014 Yu‐Ming Chu
Xu Qian
Xiaoming Zhang
+ PDF Chat Generalized Hardy operators 2022 The Anh Bui
Piero DʼAncona
+ PDF Chat A class of weighted Hardy type inequalities in $$\mathbb {R}^N$$ 2021 Anna Canale
+ PDF Chat A sharpened version of Hardy’s inequality for parameter "Equation missing" <!-- No EquationSource Format="TEX", only image and EquationSource Format="MATHML" --> 2013 Yong-Ping Deng
Shanhe Wu
Deng He
+ Generalized Poincaré embeddings and weighted Hardy operator on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msubsup><mml:mi>Q</mml:mi><mml:mi>p</mml:mi><mml:mrow><mml:mi>α</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi></mml:mrow></mml:msubsup></mml:math> spaces 2010 Canqin Tang
Zhichun Zhai
+ PDF Chat Weighted Hardy-Type Inequalities in Variable Exponent Morrey-Type Spaces 2013 Dag Lukkassen
Lars-Erik Persson
Stefan Samko
Peter Wall
+ On an extension of the Hardy-Hilbert theorem 2005 Weijian Jia
Gao Mingzhe
Xuemei Gao
+ Generalized weighted Sobolev spaces and applications to Sobolev orthogonal polynomials: a survey. 2006 José M. Rodrı́guez
Venancio Álvarez
Elena Romera
Domingo Pestana
+ PDF Chat Weighted Hardy and Potential Operators in Morrey Spaces 2012 Natasha Samko