Layer potentials beyond singular integral operators

Type: Article

Publication Date: 2013-06-25

Citations: 49

DOI: https://doi.org/10.5565/publmat_57213_08

Abstract

We prove that the double layer potential operator and the gradient of the single layer potential operator are L 2 bounded for general second order divergence form systems.As compared to earlier results, our proof shows that the bounds for the layer potentials are independent of well posedness for the Dirichlet problem and of De Giorgi-Nash local estimates.The layer potential operators are shown to depend holomorphically on the coefficient matrix A ∈ L∞, showing uniqueness of the extension of the operators beyond singular integrals.More precisely, we use functional calculus of differential operators with non-smooth coefficients to represent the layer potential operators as bounded Hilbert space operators.In the presence of Moser local bounds, in particular for real scalar equations and systems that are small perturbations of real scalar equations, these operators are shown to be the usual singular integrals.Our proof gives a new construction of fundamental solutions to divergence form systems, valid also in dimension 2.

Locations

  • Publicacions Matemàtiques - View
  • arXiv (Cornell University) - View - PDF
  • LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones Científicas) - View - PDF

Similar Works

Action Title Year Authors
+ Layer potentials beyond singular integral operators 2012 Andreas Rosén
+ Layer potentials beyond singular integral operators 2012 Andreas Rosén
+ Analyticity of layer potentials and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> solvability of boundary value problems for divergence form elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mo>∞</mml:mo></mml:msup></mml:math> coefficients 2010 M. Angeles Alfonseca
Pascal Auscher
Andreas Axelsson
Steve Hofmann
Seick Kim
+ Regularizing properties of the double layer potential of second order elliptic differential operators 2021 Francesco Dondi
Massimo Lanza de Cristoforis
+ Layer potentials and boundary value problems for elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msup></mml:math> coefficients satisfying the small Carleson measure norm condition 2014 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ The Double Layer Potential Operator Through Functional Calculus 2012 Michail Krimpogiannis
+ Square function estimates on layer potentials for higher-order elliptic equations 2015 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ Square function estimates on layer potentials for higher-order elliptic equations 2015 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ Layer potentials and boundary value problems for elliptic equations with complex $L^{\infty}$ coefficients satisfying the small Carleson measure norm condition 2013 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ PDF Chat The Dirichlet Problem for Second-Order Divergence Form Elliptic Operators with Variable Coefficients: The Simple Layer Potential Ansatz 2015 Alberto Cialdea
Vita Leonessa
Angelica Malaspina
+ Critical Perturbations for Second Order Elliptic Operators. Part II: Non-tangential maximal function estimates 2023 Simon Bortz
Steve Hofmann
José Luis Luna García
Svitlana Mayboroda
Bruno Poggi
+ PDF Chat Boundedness of single layer potentials associated to divergence form parabolic equations with complex coefficients 2016 Alejandro J. Castro
Kaj Nyström
Olow Sande
+ The Double Multi-Layer Potential Operator 2012 Irina Mitrea
Marius Mitrea
+ The Double Layer Potential Operator on Hardy Spaces 2023 Yasuo Komori‐Furuya
+ Sharp norm estimates of layer potentials and operators at high frequency 2014 Jeffrey Galkowski
Xiaolong Han
Melissa Tacy
+ Sharp norm estimates of layer potentials and operators at high frequency 2014 Jeffrey Galkowski
Xiaolong Han
Melissa Tacy
+ PDF Chat Square function and maximal function estimates for operators beyond divergence form equations 2013 Andreas Rosén
+ THE LAYER POTENTIALS OF SOME PARTIAL DIFFERENTIAL OPERATORS: REAL ANALYTIC DEPENDENCE UPON PERTURBATIONS 2009 Matteo Dalla Riva
+ PDF Chat On uniqueness results for Dirichlet problems of elliptic systems without de Giorgi–Nash–Moser regularity 2020 Pascal Auscher
Moritz Egert
+ Boundedness of single layer potentials associated to divergence form parabolic equations with complex coefficients 2015 Alejandro J. Castro
Kaj Nyström
Olow Sande

Works Cited by This (7)

Action Title Year Authors
+ Analyticity of layer potentials and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> solvability of boundary value problems for divergence form elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mo>∞</mml:mo></mml:msup></mml:math> coefficients 2010 M. Angeles Alfonseca
Pascal Auscher
Andreas Axelsson
Steve Hofmann
Seick Kim
+ PDF Chat Non-unique solutions to boundary value problems for non-symmetric divergence form equations 2009 Andreas Axelsson
+ A New Approach to Absolute Continuity of Elliptic Measure, with Applications to Non-symmetric Equations 2000 Carlos E. Kenig
Herbert Koch
Jill Pipher
Tatiana Toro
+ The Solution of the Kato Square Root Problem for Second Order Elliptic Operators on \Bbb R n 2002 Pascal Auscher
Steve Hofmann
Michael T. Lacey
Alan McIntosh
Ph. Tchamitchian
+ PDF Chat Solvability of elliptic systems with square integrable boundary data 2009 Pascal Auscher
Andreas Axelsson
Alan McIntosh
+ Square function/non-tangential maximal function estimates and the dirichlet problem for non-symmetric elliptic operators 2012 Steve Hofmann
Carlos E. Kenig
Svitlana Mayboroda
Jill Pipher
+ PDF Chat Weighted maximal regularity estimates and solvability of non-smooth elliptic systems I 2010 Pascal Auscher
Andreas Axelsson