On the Littlewood-Paley function $g^*$ of multiple Fourier integrals and Hankel multiplier transformations

Type: Article

Publication Date: 1967-01-01

Citations: 17

DOI: https://doi.org/10.2748/tmj/1178243254

Locations

  • Tohoku Mathematical Journal - View - PDF

Similar Works

Action Title Year Authors
+ The Littlewood-Paley theory for multiple Fourier series 1998 M. M. Skriganov
+ Littlewood-Paley functions without Fourier transform estimates 2024 ShĆ«ichi Satƍ
+ Paley-wiener theorems for the Hankel transformation 1995 Jorge J. Betancor
Manuel Linares Linares
J. M. R. MĂ©ndez
+ Paley inequality for Bellman transform of multiple Fourier series 2014 A. M. Zhantakbaeva
Erlan Nursultanov
+ Real Paley-Wiener Theorems for the Hankel Transform 2006 Nils Byrial Andersen
+ Hilbert transform and Littlewood–Paley theory 2016 Tuomas Hytönen
Jan van Neerven
Mark Veraar
Lutz Weis
+ PDF Chat On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions 1985 Makoto Kaneko
Gen-ichirĂŽ Sunouchi
+ PDF Chat Littlewood–Paley Equivalence and Homogeneous Fourier Multipliers 2016 ShĆ«ichi Satƍ
+ A Hardy–Littlewood theorem for multiple series 2007 Mikhail Ivanovich Dyachenko
Sergey Tikhonov
+ On multiple fourier series 1946 K. Chandrasekharan
+ Multilinearized Littlewood-Paley operators 2002 Shuichi Sato
KĂŽzĂŽ Yabuta
+ PDF Chat Extensions of a Fourier multiplier theorem of Paley 1969 John J. F. Fournier
+ On multipliers of double Fourier series 1986 S. Baron
+ Remarks on multiple Fourier series 1976 H. Triebel
+ PDF Chat On Littlewood-Paley functions 1974 W. R. Madych
+ Littlewood-Paley theory and multipliers 2000 Javier Duoandikoetxea
+ PDF Chat Split functions, Fourier transforms and multipliers 2014 Laura De Carli
Steve Hudson
+ On the localization property of multiple Fourier series 1968 Satoru Igari
+ Introduction to Fourier-Mukai and Nahm transforms 2009 Ugo Bruzzo
+ On the Littlewood-Paley Function g* (Ξ) 1989 A. Zygmund