Multiple solutions for the $p$-Laplacian under global nonresonance

Type: Article

Publication Date: 1991-01-01

Citations: 46

DOI: https://doi.org/10.1090/s0002-9939-1991-1045589-1

Abstract

Via the study of a simple Dirichlet boundary value problem associated with the one-dimensional <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Laplacian, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p greater-than 1"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p &gt; 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we show that in globally nonresonant problems for this differential operator the number of solutions may be arbitrarily large when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p element-of left-parenthesis 1 comma normal infinity right-parenthesis minus StartSet 2 EndSet"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mi class="MJX-variant" mathvariant="normal">∖<!-- ∖ --></mml:mi> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mn>2</mml:mn> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">p \in (1,\infty )\backslash \{ 2\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. From this point of view <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p equals 2"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p = 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> turns out to be a very special case.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Multiple Solutions for the p-Laplacian Under Global Nonresonance 1991 Manuel del Pino
Raúl Manásevich
+ INFINITELY MANY SOLUTIONS FOR THE DIRICHLET PROBLEM FOR THE <font>P</font>-LAPLACIAN 2009 Filippo Cammaroto
Antonia Chinnì
Beatrice Di Bella
+ MULTIPLICITY RESULTS FOR A NEUMANN-TYPE PROBLEM INVOLVING THE <font>P</font>-LAPLACIAN 2009 Filippo Cammaroto
Antonia Chinnì
Beatrice Di Bella
+ Positive solutions and multiple solutions at non-resonance, resonance and near resonance for hemivariational inequalities with 𝑝-Laplacian 2007 Dumitru Motreanu
V. V. Motreanu
Nikolas S. Papageorgiou
+ Multiple solutions for a Neumann problem involving the -Laplacian 2009 F. Cammaroto
Antonia Chinnì
Beatrice Di Bella
+ Multiple Solutions for a Singular Problem Involving the Fractional $$p$$-$$q$$-Laplacian Operator 2022 Abdeljabbar Ghanmi
Tarek Kenzizi
Nguyen Thanh Chung
+ Multiple solutions for a system of equations with p-Laplacian 2008 Shuting Cai
Yongqing Li
+ Multiplicity of positive solutions to a singular<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi>p</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>p</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian system with coupled integral boundary conditions 2016 Jeongmi Jeong
Chan-Gyun Kim
Eun Kyoung Lee
+ Arbitrarily many solutions for a perturbed <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math>-Laplacian equation involving oscillatory terms 2009 Guowei Dai
+ Nonuniform nonresonance at the first eigenvalue of the p-laplacian 1997 Meirong Zhang
+ Multiple Solutions for p-Laplacian Type Problems with an Asymptotically p-linear Term 2014 Anna María Candela
G. Palmieri
+ Solutions and multiple solutions for problems with the p-Laplacian 2007 Shouchuan Hu
Nikolaos S. Papageorgiou
+ PDF Chat Multiple Solutions to (p,q)-Laplacian Problems with Resonant Concave Nonlinearity 2015 S. Marano
Sunra Mosconi
Nikolaos S. Papageorgiou
+ Multiple Solutions for Problems Involving p(x)-Laplacian and p(x)-Biharmonic Operators 2024 Abdelhakim Sahbani
Abdeljabbar Ghanmi
Rym Chammem
+ Multiple solutions for a nonlocal problem 2023 Changmu Chu
Jiaquan Liu
+ Multiple solutions for perturbed p-Laplacian problems on R^N 2015 Ying Li
+ Multiple solutions for p-Laplacian type problems with asymptotically p-linear terms via a cohomological index theory 2013 Anna María Candela
G. Palmieri
Kanishka Perera
+ Multiple positive solutions of nonhomogeneous equations involving the p-Laplacian 2001 Yi Huang
+ The eigenvalue problem for a class of degenerate operators related to the normalized $ p $-Laplacian 2021 Fang Liu
+ Multiple Solutions for a p(x)-Laplacian-Like Problem with Neumann Boundary Conditions 2024 Khaled Kefi