Sobolev Stability of Plane Wave Solutions to the Cubic Nonlinear Schrödinger Equation on a Torus

Type: Article

Publication Date: 2013-05-16

Citations: 53

DOI: https://doi.org/10.1080/03605302.2013.785562

Abstract

It is shown that plane wave solutions to the cubic nonlinear Schrödinger equation on a torus behave orbitally stable under generic perturbations of the initial data that are small in a high-order Sobolev norm, over long times that extend to arbitrary negative powers of the smallness parameter. The perturbation stays small in the same Sobolev norm over such long times. The proof uses a Hamiltonian reduction and transformation and, alternatively, Birkhoff normal forms or modulated Fourier expansions in time.

Locations

  • Communications in Partial Differential Equations - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus 2011 Erwan Faou
Ludwig J. Gauckler
Christian Lubich
+ Sobolev stability of plane wave solutions to the cubic nonlinear Schr\"odinger equation on a torus 2011 Erwan Faou
Ludwig J. Gauckler
Christian Lubich
+ Plane wave stability of the split-step Fourier method for the nonlinear Schrödinger equation 2013 Erwan Faou
Ludwig J. Gauckler
Christian Lubich
+ Plane wave stability of the split-step Fourier method for the nonlinear Schr\"odinger equation 2013 Erwan Faou
Ludwig J. Gauckler
Christian Lubich
+ PDF Chat PLANE WAVE STABILITY OF THE SPLIT-STEP FOURIER METHOD FOR THE NONLINEAR SCHRÖDINGER EQUATION 2014 Erwan Faou
Ludwig J. Gauckler
Christian Lubich
+ Long-time instability and unbounded Sobolev orbits for some periodic nonlinear Schrödinger equations 2012 Zaher Hani
+ Long-time instability and unbounded Sobolev orbits for some periodic nonlinear Schr\"odinger equations 2012 Zaher Hani
+ Stability of the Cubic Nonlinear Schrodinger Equation on Irrational Tori 2018 Gigliola Staffilani
Bobby Wilson
+ PDF Chat Stability of the Cubic Nonlinear Schrodinger Equation on an Irrational Torus 2020 Gigliola Staffilani
Bobby Wilson
+ Stability of the Cubic Nonlinear Schrodinger Equation on Irrational Tori 2018 Gigliola Staffilani
Bobby L. Wilson
+ Long time stability of small finite gap solutions of the cubic nonlinear Schrödinger equation on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">T</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> 2018 Alberto Maspero
Michela Procesi
+ Long time stability of plane wave solutions to Schrödinger equation on Torus 2020 Lufang Mi
Yingte Sun
Peizhen Wang
+ WELL-POSEDNESS FOR THE CUBIC NONLINEAR SCHRÖDINGER EQUATIONS ON TORI 2018 Haitian Yue
+ Sobolev Stability of Plane Wave Solutions to the Nonlinear Schrodinger Equation 2014 Bobby L. Wilson
+ Sobolev Stability of Plane Wave Solutions to the Nonlinear Schrodinger Equation 2014 Bobby Wilson
+ PDF Chat Sobolev Stability of Plane Wave Solutions to the Nonlinear Schrödinger Equation 2015 Bobby Wilson
+ Strong nonlinear instability and growth of Sobolev norms near quasiperiodic finite-gap tori for the 2D cubic NLS equation 2018 Marcel Guàrdia
Zaher Hani
Emanuele Haus
Alberto Maspero
Michela Procesi
+ PDF Chat Numerical long-time energy conservation for the nonlinear Schrödinger equation 2016 Ludwig J. Gauckler
+ Strong nonlinear instability and growth of Sobolev norms near quasiperiodic finite gap tori for the 2D cubic NLS equation 2022 Marcel Guàrdia
Zaher Hani
Emanuele Haus
Alberto Maspero
Michela Procesi
+ PDF Chat Reducibility for a linear wave equation with Sobolev smooth fast-driven potential 2023 Luca Franzoi