The rate of convergence of Hermite function series

Type: Article

Publication Date: 1980-01-01

Citations: 49

DOI: https://doi.org/10.1090/s0025-5718-1980-0583508-3

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha greater-than 0"> <mml:semantics> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\alpha &gt; 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the least upper bound of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="gamma"> <mml:semantics> <mml:mi>γ<!-- γ --></mml:mi> <mml:annotation encoding="application/x-tex">\gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis z right-parenthesis tilde upper O left-parenthesis e Superscript minus q StartAbsoluteValue z EndAbsoluteValue gamma Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>∼<!-- ∼ --></mml:mo> <mml:mi>O</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>q</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>z</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>γ<!-- γ --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f(z) \sim O({e^{ - q|z|\gamma }})</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> for some positive constant <italic>q</italic> as <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue z EndAbsoluteValue right-arrow normal infinity"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>z</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">|z| \to \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on the real axis. It is then proved that at least an infinite subsequence of the coefficients <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace a Subscript n Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ {a_n}\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis z right-parenthesis equals e Superscript minus z squared slash 2 Baseline sigma-summation Underscript n equals 0 Overscript normal infinity Endscripts a Subscript n Baseline upper H Subscript n Baseline left-parenthesis z right-parenthesis comma"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>z</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:munderover> <mml:mo movablelimits="false">∑<!-- ∑ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:munderover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">f(z) = {e^{ - {z^2}/2}}\sum \limits _{n = 0}^\infty {{a_n}{H_n}(z),}</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> where the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{H_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are the normalized Hermite polynomials, must satisfy certain lower bounds. The theorems show two striking facts. First, the convergence rate of a Hermite series depends not only upon the order <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="rho"> <mml:semantics> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:annotation encoding="application/x-tex">\rho</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for an entire function or the location of the nearest singularity for a singular function as for a power series but also upon <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha"> <mml:semantics> <mml:mi>α<!-- α --></mml:mi> <mml:annotation encoding="application/x-tex">\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, thus making the convergence theory of Hermitian series more complicated (and interesting) than that for any ordinary Taylor expansion. Second, the poorer the match between the asymptotic behavior of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis z right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f(z)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="exp left-parenthesis negative 1 slash 2 z squared right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>exp</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:msup> <mml:mi>z</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\exp (-1/2 z^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the poorer the convergence of the Hermite series will be.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The Rate of Convergence of Hermite Function Series 1980 John P. Boyd
+ ON THE CONVERGENCE FACTORS OF HERMITE SERIES 2015 B. S. Pandey
+ Rate of convergence of Hermite-Fejér polynomials for functions with derivatives of bounded variation 1992 R. Bojanić
F. Cheng
+ PDF Chat Error bounds for a uniform asymptotic expansion of the Legendre function 𝑃_{𝑛}^{-𝑚}(𝑐𝑜𝑠ℎ𝑧) 1988 P. N. Shivakumar
R. Wong
+ The Asymptotic Behaviour of the Hermite Polynomials 1956 L. O. Heflinger
+ PDF Chat Convergence of cardinal series 1986 Carl de Boor
Klaus Höllig
S. D. Riemenschneider
+ Hermite method convergence analyses and improvement 2006 Wang Ruiqiu
Bian Yongmei
Chen Wuyi
+ PDF Chat Rates of convergence of Gaussian quadrature for singular integrands 1984 D. S. Lubinsky
P. Rabinowitz
+ A globally uniform asymptotic expansion of the hermite polynomials 2008 Wei Shi
+ Asymptotics of L p -norms of Hermite polynomials 2012 Alexander Ivanovich Aptekarev
D. N. Tulyakov
+ PDF Chat A Chebyshev polynomial rate-of-convergence theorem for Stieltjes functions 1982 John P. Boyd
+ PDF Chat Nongeometric convergence of best 𝐿_{𝑝}(𝑝≠2) polynomial approximants 1990 Kamen G. Ivanov
E. B. Saff
+ The rate of convergence of expansions in Freud polynomials 1988 H. N. Mhaskar
+ Approximation of functions by the Fourier-Hermite quotient 2018 A. M. Tuichiev
+ PDF Chat The convergence almost everywhere of Legendre series 1972 Harry Pollard
+ PDF Chat The rate of convergence of Chebyshev polynomials for functions which have asymptotic power series about one endpoint 1981 John P. Boyd
+ The rapidity of convergence of quasi-Hermitefejér interpolation polynomials 1976 R. B. Saxena
K. K. Mathur
+ PDF Chat How slowly can quadrature formulas converge? 1972 Peter R. Lipow
Frank Stenger
+ Mean Convergence of Expansions in Laguerre and Hermite Series 1965 Richard Askey
Stephen Wainger
+ PDF Chat On uniform convergence of Hermite series 1983 Zbigniew Sadlok