Smooth extensions in infinite dimensional Banach spaces

Type: Article

Publication Date: 1972-01-01

Citations: 4

DOI: https://doi.org/10.1090/s0002-9947-1972-0298712-3

View Chat PDF

Abstract

If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="l Subscript p Baseline left-parenthesis omega right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>l</mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{l_p}(\omega )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="c 0 left-parenthesis omega right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>c</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{c_0}(\omega )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we show <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has the following extension property. Any homeomorphism from a compact subset <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be extended to a homeomorphism of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> onto <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which is a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Superscript normal infinity"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>C</mml:mi> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{C^\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> diffeomorphism on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B minus upper M"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mi class="MJX-variant" mathvariant="normal">∖<!-- ∖ --></mml:mi> <mml:mi>M</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">B\backslash M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to its image in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This is done by writing <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as a direct sum of closed subspaces <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{B_1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B 2"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{B_2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> both isomorphically isometric to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> so that the natural projection of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{B_1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> along <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B 2"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{B_2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is one-to-one (see H. H. Corson, contribution in <italic>Symposium on infinite dimensional topology</italic>, Ann. of Math. Studies (to appear)). With <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K comma upper B comma upper B 1"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">K,B,{B_1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B 2"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{B_2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as above a homeomorphism of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> onto itself is constructed which leaves the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{B_1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-coordinates of points in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> unchanged, carries <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{B_1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and is a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Superscript normal infinity"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>C</mml:mi> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{C^\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> diffeomorphic map on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B minus upper K"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mi class="MJX-variant" mathvariant="normal">∖<!-- ∖ --></mml:mi> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">B\backslash K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. From these results the extension theorem may be proved by standard methods.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Smooth extensions of Lipschitzian real functions 1988 Biagio Ricceri
+ Strong pseudo-contractions perturbed by compact operators in Banach spaces 2005 Claudio H. Morales
+ PDF Chat Nets of extreme Banach limits 1976 Rodney Nillsen
+ PDF Chat Regularity and Algebras of Analytic Functions in Infinite Dimensions 1996 Richard M. Aron
Pablo Galindo
Domingo Garcı́a
Manuel Maestre
+ PDF Chat An application of Banach limits 1988 Zaheer Ahmad
Mursaleen
+ PDF Chat Nonstandard extensions of transformations between Banach spaces 1980 D. G. Tacon
+ 𝐶^{𝑘}-smooth approximations of LUR norms 2013 Petr Hájek
A. Procházka
+ PDF Chat Extremal compressions of closed operators 1992 K.-H. Förster
K. Jahn
+ PDF Chat Banach spaces failing the almost isometric universal extension property 1998 Darrin Speegle
+ PDF Chat The spaces of functions of finite upper 𝑝-variation 1979 Robert Nelson
+ PDF Chat Approximate isometries on finite dimensional Banach spaces 1975 Richard D. Bourgin
+ PDF Chat 𝑙_{∞} and interpolation between Banach lattices 1997 Nahum Zobin
Veronica Zobin
+ Filling analytic sets by the derivatives of 𝐶¹-smooth bumps 2004 Marián Fabian
Ondřej F. K. Kalenda
Jan Kolář
+ PDF Chat Operators on Banach spaces taking compact sets inside ranges of vector measures 1992 Cándido Piñeiro
+ PDF Chat Differentiation Theory over Infinite-Dimensional Banach Spaces 2016 Claudio Asci
+ PDF Chat Copies of 𝑙_{∞} in 𝐿^{𝑝}(𝜇;𝑋) 1990 José Mendoza
+ Extension of random contractions 1988 J. Myjak
W. Zygadlewicz
+ PDF Chat A characterization of smooth functions defined on a Banach space 1979 Richard Hain
+ PDF Chat Extending continuous functions in zero-dimensional spaces 1975 Nancy M. Warren
+ PDF Chat Locally finite-dimensional sets of operators 1993 Leonya Livshits