Analytic linearization of the Korteweg-de Vries equation

Type: Article

Publication Date: 1983-09-01

Citations: 35

DOI: https://doi.org/10.2140/pjm.1983.108.203

Abstract

We prove that the KdV equation is linearized by an analytic function, which is projectively analytically invertible.The Cauchy problem for the KdV equation is entirely solved by this fact.The non-linear superposition principle is a trivial consequence of convexity for the image of the linearization operator.

Locations

  • Pacific Journal of Mathematics - View - PDF
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Analytic solutions of a linear functional equation 1969 Marek Kuczma
+ Analytic solution of the two-dimensional Korteweg-de Vries (KdV) equation 1974 Valerii Dryuma
+ Linearization of PDEs 2008 George W. Bluman
+ Analyticity and smoothing effect for the Korteweg de Vries equation with a single point singularity 2000 Keiichi Kato
Takayoshi Ogawa
+ The complete integrability analysis of the inverse Korteweg-de Vries equation 1991 В. Г. Самойленко
N. N. Pritula
U. S. Suyarov
+ KdV Equation as an Euler-Poincaré Equation 1997 M. K. Fung
+ An Abstract Nonlinear Cauchy-Kovalevska Theorem 1970 François Trèves
+ Linearization for the Boltzmann Equation 1972 Branko Grünbaum
+ QUASI-LINEAR EQUATIONS AND ANALYTIC DATA 2023 Emmanuele DiBenedetto
Ugo Gianazza
+ INTEGRABILITY OF THE KDV EQUATION 1989
+ PDF Chat Linearization of Poisson Brackets 2004 Rui Loja Fernandes
Philippe Monnier
+ PDF Chat The Linear KdV Equation with an Interface 2016 Bernard Deconinck
Natalie E. Sheils
David A. Smith
+ Linear PDEs of Physics 2006
+ Quasi-Linear Equations and the Cauchy–Kowalewski Theorem 2009 Emmanuele DiBenedetto
+ The Korteweg-de Vries equation and beyond 1995 A. S. Fokas
+ PDF Chat Entire Functions Satisfying a Linear Differential Equation 1968 Sejal Shah
+ The Derivative as a Linear Transformation 1969 A. W. Roberts
+ A KAM result for quasi-linear and fully nonlinear KdV 2012 Pietro Baldi
+ Chapter 9. Nonlinear Riemann Mapping Theorems 2008
+ Transformations of ordinary linear differential equations with analytic coefficients 1989 N. I. Nagnibida