Field theory of the random flux model

Type: Article

Publication Date: 1999-07-26

Citations: 9

DOI: https://doi.org/10.1088/0305-4470/32/31/101

Abstract

The long-range properties of the random flux model (lattice fermions hopping under the influence of maximally random link disorder) are shown to be described by a supersymmetric field theory of non-linear -model type, where the group GL(n|n) is the global invariant manifold. An extension to non-Abelian generalizations of this model identifies connections to lattice QCD, Dirac fermions in a random gauge potential, and stochastic non-Hermitian operators.

Locations

  • Journal of Physics A Mathematical and General - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Field theory of the random flux model 1999 Alexander Altland
Benjamin D. Simons
+ Field Theory on a Random Lattice. 1984 Hai-cang Ren
+ Random field theory 2007 Keith J. Worsley
Karl Friston
+ Random Field Theory 2007 Keith J. Worsley
+ Field theory and random walks. 1987 Janse van Rensburg
Esaias Johannes.
+ Random matrices, fermions, collective fields, and universality 1997 B. Sakita
+ PDF Chat RANDOM MATRICES AND SUPERSYMMETRY IN DISORDERED SYSTEMS 2006 K. B. Efetov
+ PDF Chat Random Lattices versus Regular Lattices 1986 D. Espriu
Mark Gross
P. E. L. Rakow
J.F. Wheater
+ PDF Chat Random-Flux-Induced Topological Phase Transitions and Chern Insulators 2024 Chang-An Li
Bo Fu
Jian Li
Björn Trauzettel
+ PDF Chat Low-Dimensional Models in Statistical Physics and Quantum Field Theory 1996 Harald Grosse
L. Pittner
+ The random connection model in high dimensions 1997 Ronald Meester
Mathew D. Penrose
Anish Sarkar
+ Random walks as Euclidean field theory (EFT) 1992 Roberto Fernández
Jürg Fröhlich
Alan D. Sokal
+ Random walks in field theory 2008 Andreas Pordt
+ PDF Chat Supersymmetry approach to the random heteropolymer theory 1999 Alexander I. Olemskoi
+ Urn models, Markov chains and random walks in cosmological topologically massive gravity at the critical point 2023 Yannick Mvondo-She
+ Random Determinants in Physics 1990 Vi︠a︡cheslav Leonidovich Girko
+ Random and Integrable Models in Mathematics and Physics 2011 Pierre van Moerbeke
+ The random chessboard model: A mean-field theory 1986 Santiago D’Elía
+ Functional Renormalization Group of Disordered Systems 2019 Taiki Haga
+ Solvable statistical models on a random lattice 1995 Ivan Kostov