Type: Article
Publication Date: 1983-01-01
Citations: 13
DOI: https://doi.org/10.1090/s0002-9939-1983-0706534-4
An elementary proof is given showing that if a continuous irreducible unitary representation of a locally compact unimodular group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has one nontrivial square integrable matrix entry, then all its matrix entries are square integrable. This result was first proved by R. Godement.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | Représentations de Groupes Localement Compacts | 1972 |
Armand Borel |