MLI: An API for Distributed Machine Learning

Type: Article

Publication Date: 2013-12-01

Citations: 147

DOI: https://doi.org/10.1109/icdm.2013.158

Download PDF

Abstract

MLI is an Application Programming Interface designed to address the challenges of building Machine Learning algorithms in a distributed setting based on data-centric computing. Its primary goal is to simplify the development of high-performance, scalable, distributed algorithms. Our initial results show that, relative to existing systems, this interface can be used to build distributed implementations of a wide variety of common Machine Learning algorithms with minimal complexity and highly competitive performance and scalability.

Locations

  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ MLI: An API for Distributed Machine Learning 2013 Evan Sparks
Ameet Talwalkar
Virginia Smith
Jey Kottalam
Xinghao Pan
Joseph E. Gonzalez
Michael J. Franklin
Michael I. Jordan
Tim Kraska
+ MLI: An API for Distributed Machine Learning 2013 Evan Sparks
Ameet Talwalkar
Virginia Smith
Jey Kottalam
Xinghao Pan
Joseph E. Gonzalez
Michael J. Franklin
Michael I. Jordan
Tim Kraska
+ PDF Chat Understanding and optimizing the performance of distributed machine learning applications on apache spark 2017 Celestine DĂźnner
Thomas Parnell
Kubilay Atasu
Manolis Sifalakis
Haralampos Pozidis
+ Parameter Database : Data-centric Synchronization for Scalable Machine Learning 2015 Naman Goel
Divyakant Agrawal
Sanjay Chawla
Ahmed K. Elmagarmid
+ Parameter Database : Data-centric Synchronization for Scalable Machine Learning 2015 Naman Goel
Divyakant Agrawal
Sanjay Chawla
Ahmed K. Elmagarmid
+ Strategies and Principles of Distributed Machine Learning on Big Data 2015 Eric P. Xing
Qirong Ho
Pengtao Xie
Wei Dai
+ GraphLab: A Distributed Framework for Machine Learning in the Cloud 2011 Yucheng Low
Joseph E. Gonzalez
Aapo Kyrola
Danny Bickson
Carlos Guestrin
+ MLlib: Machine Learning in Apache Spark 2015 Xiangrui Meng
Joseph K. Bradley
Burak Yavuz
Evan Sparks
Shivaram Venkataraman
Davies Liu
Jeremy Freeman
DB Tsai
Manish Amde
Sean Owen
+ Petuum: A New Platform for Distributed Machine Learning on Big Data 2013 Eric P. Xing
Qirong Ho
Wei Dai
Jin Kyu Kim
Jinliang Wei
Seunghak Lee
Xun Zheng
Pengtao Xie
Abhimanu Kumar
Yaoliang Yu
+ Real-Time Machine Learning: The Missing Pieces 2017 Robert Nishihara
Philipp Moritz
Stephanie Wang
Alexey Tumanov
William Paul
Johann Schleier-Smith
Richard Liaw
Mehrdad Niknami
Michael I. Jordan
Ion Stoica
+ Nonparametric Distributed Learning Architecture for Big Data: Algorithm and Applications 2015 Scott G. Bruce
Zeda Li
Hsiang-Chieh Yang
Subhadeep Mukhopadhyay
+ PDF Chat Petuum: A New Platform for Distributed Machine Learning on Big Data 2015 Eric P. Xing
Qirong Ho
Wei Dai
Jin Kyu Kim
Jinliang Wei
Seunghak Lee
Xun Zheng
Pengtao Xie
Abhimanu Kumar
Yaoliang Yu
+ Nonparametric Distributed Learning Architecture for Big Data: Algorithm and Applications 2015 Scott A. Bruce
Zeda Li
Hsiang-Chieh Yang
Subhadeep Mukhopadhyay
+ PDF Chat MAD-Max Beyond Single-Node: Enabling Large Machine Learning Model Acceleration on Distributed Systems 2024 Samuel Hsia
Alicia Golden
Bilge Acun
Newsha Ardalani
Zachary DeVito
Gu-Yeon Wei
David Brooks
Carole-Jean Wu
+ PDF Chat Breaking the computation and communication abstraction barrier in distributed machine learning workloads 2022 Abhinav Jangda
Jun Huang
Ye Liu
Amir Hossein Nodehi Sabet
Saeed Maleki
Youshan Miao
Madanlal Musuvathi
Todd Mytkowicz
Olli Saarikivi
+ Network-accelerated Distributed Machine Learning Using MLFabric 2019 Raajay Viswanathan
Aditya Akella
+ PDF Chat KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics 2017 Evan Sparks
Shivaram Venkataraman
Tomer Kaftan
Michael J. Franklin
Benjamin Recht
+ PDF Chat Practical Performance of a Distributed Processing Framework for Machine-Learning-based NIDS 2024 M. Kajiura
Junya Nakamura
+ PDF Chat Applications of Distributed Machine Learning for the Internet-of-Things: A Comprehensive Survey 2024 Mai Le
Thien Huynh‐The
Tan Do‐Duy
Thai-Hoc Vu
Won‐Joo Hwang
Quoc‐Viet Pham
+ Federated Learning Operations Made Simple with Flame 2023 Harshit Daga
Jaemin Shin
Dhruv Garg
Ada Gavrilovska
Myungjin Lee
Ramana Rao Kompella