Type: Article
Publication Date: 2012-08-27
Citations: 49
DOI: https://doi.org/10.1103/physrevlett.109.091801
The recent discovery by the Daya-Bay and RENO experiments, that \theta_{13} is nonzero and relatively large, significantly impacts existing experiments and the planning of future facilities. In many scenarios, the nonzero value of \theta_{13} implies that \theta_{23} is likely to be different from \pi/4. Additionally, large detectors will be sensitive to matter effects on the oscillations of atmospheric neutrinos, making it possible to determine the neutrino mass hierarchy and the octant of \theta_{23}. We show that a 50 kT magnetized liquid argon neutrino detector can ascertain the mass hierarchy with a significance larger than 4 sigma with moderate exposure times, and the octant at the level of 2-3 sigma with greater exposure.