A three-parameter markov model for sedimentation II. Simulation of transit times and comparison with experimental results

Type: Article

Publication Date: 1987-02-01

Citations: 14

DOI: https://doi.org/10.1016/0032-5910(87)80131-6

Locations

  • Powder Technology - View

Similar Works

Action Title Year Authors
+ A three-parameter Markov model for sedimentation III. A stochastic Runge—Kutta method for computing first-passage times 1994 Elmer M. Tory
Monika Bargieł
Rebecca L. Honeycutt
+ A Markov Model for Sedimentation: Fundamental Issues and Insights 1987 David K. Pickard
Elmer M. Tory
+ An iterative algorithm for computing mean first passage times of Markov chains 2014 Jianhong Xu
+ PDF Chat Growth and Dissolution of Macromolecular Markov Chains 2016 Pierre Gaspard
+ A computational procedure for estimation of the mixing time of the random-scan Metropolis algorithm 2015 David A. Spade
+ Stochastic Simulation Of Sedimentation 1970 Elmer M. Tory
R.A. Ford
+ PDF Chat Brownian Dynamics 2020
+ MARKOV CHAIN MONTE CARLO SOLUTION OF POISSON’S EQUATION 2015 N. Matthew
+ Markov chain transition probabilities and experimental data 1989 Haym Benaroya
+ The computation of the mean first passage times for Markov chains 2018 Jeffrey J. Hunter
+ Markov Chain Monte Carlo Methods for Simulations of Biomolecules 2007 Bernd A. Berg
+ Mean first-passage time calculations: comparison of the deterministic Hill’s algorithm with Monte Carlo simulations 2012 Mieczyslaw Torchala
Przemysław Chełminiak
Paul A. Bates
+ A stochastic modelling of crystallization in a dispersed medium 2002 Guy Vallet
David Trujillo
+ PDF Chat Markov Models of Molecular Kinetics 2019 Frank Noé
Edina Rosta
+ Introduction to Markov Chains 2016 Massimiliano Bonamente
+ Introduction to Markov Chain Monte Carlo Simulations and their Statistical Analysis 2004 Bernd A. Berg
+ Introduction to Markov Chains 2022 Massimiliano Bonamente
+ A Monte Carlo method for the simulation of kinetie models 1986 I. Lavorel
+ Appendix A. Calculation of the Markov chain dispersion process. 2016 Merel B. Soons
Gerrit W. Heil
Ran Nathan
Gabriel G. Katul
+ Microscopic Markov models for nonequilibrium reaction dynamics 2000 Mikhail V. Velikanov

Works Cited by This (1)

Action Title Year Authors
+ EDF Statistics for Goodness of Fit and Some Comparisons 1974 Michael A. Stephens