The algebra of Weyl symmetrised polynomials and its quantum extension

Type: Article

Publication Date: 1991-03-01

Citations: 58

DOI: https://doi.org/10.1007/bf02099070

Locations

  • Communications in Mathematical Physics - View
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Weyl–Wigner formulation of noncommutative quantum mechanics 2008 Catarina Bastos
Orfeu Bertolami
Nuno Costa Dias
João Nuno Prata
+ PDF Chat q -deformed star products and Moyal brackets 1998 Omer Faruk Dayi
+ A $q$-deformed Heisenberg algebra as a normed space 2018 Rafael Reno S. Cantuba
+ Phase Space Quantum Mechanics 2010 Maciej Błaszak
Ziemowit Domański
+ Phase Space Quantum Mechanics 2010 Maciej Błaszak
Ziemowit Domański
+ A unified representation of the q-oscillator and the q-plane 2000 T. Rador
+ A unified representation of the q-oscillator and the q-plane 2000 T. Rador
+ PDF Chat A comparative review of four formulations of noncommutative quantum mechanics 2016 Laure Gouba
+ PDF Chat Hilbert space representation of an algebra of observables forq-deformed relativistic quantum mechanics 1995 W. Zippold
+ PDF Chat A three-parameter deformation of the Weyl-Heisenberg algebra: differential calculus and invariance 1997 Michèle Irac-Astaud
+ Weyl algebras for quantum homogeneous spaces 2022 Gail Letzter
Siddhartha Sahi
Hadi Salmasian
+ On (p, q; α, β, l)-deformed oscillators and their oscillator algebras 2006 Igor Burban
+ The algebra of spinors and its applications to quantum mechanics. 1978 W. D. Thacker
+ PDF Chat Nonstandard Deformed Oscillators from q- and p,q-Deformations of Heisenberg Algebra 2016 A. M. Gavrilik
І. І. Качурик
+ Symmetric quantum Weyl algebras 2003 Rafael Díaz
Eddy Pariguán
+ A new kind of two-parameter deformation of Heisenberg and parabose algebras and related deformed derivative 2005 Sicong Jing
Sergei Silvestrov
+ Q-Deformed determinants and a unified realization of boson, fermion and quon algebras 1995 Zhaoyan Wu
+ Lie polynomials in an algebra defined by a linearly twisted commutation relation 2018 Rafael Reno S. Cantuba
+ PDF Chat Lie polynomials in an algebra defined by a linearly twisted commutation relation 2021 Rafael Reno S. Cantuba
+ PDF Chat GEOMETRY OF DEFORMED BOSON ALGEBRAS 1996 Patrick Crehan
Tin-Lun Ho