Hyperelliptic integrals and generalized arithmetic–geometric mean

Type: Article

Publication Date: 2012-02-29

Citations: 2

DOI: https://doi.org/10.1007/s11139-011-9353-7

Abstract

We show how certain determinants of hyperelliptic periods can be computed using a generalized arithmetic-geometric mean iteration, whose initialisation parameters depend only on the position of the ramification points. Special attention is paid to the explicit form of this dependence and the signs occurring in the real domain.

Locations

  • The Ramanujan Journal - View - PDF

Similar Works

Action Title Year Authors
+ Hypergeometric analogues of the arithmetic-geometric mean iteration 1993 Jonathan M. Borwein
Peter Borwein
Frank G. Garvan
+ A remark on the ramification of hyperelliptic integrals as functions of parameters 1968 Vladimir I. Arnold
+ Hyperelliptic Integrals 1971 Paul F. Byrd
Morris D. Friedman
+ Hyperelliptic Integrals 1954 Paul F. Byrd
Morris D. Friedman
+ Cubic modular identities of Ramanujan, hypergeometric functions and analogues of the arithmetic-geometric mean iteration 1994 Frank G. Garvan
+ PDF Chat Coleman integration for even-degree models of hyperelliptic curves 2015 Jennifer S. Balakrishnan
+ PDF Chat Arithmetic and Geometry Around Hypergeometric Functions 2007 Rolf‐Peter Holzapfel
A. Muhammed Uludaǧ
Masaaki Yoshida
+ PDF Chat Periods of rational integrals : algorithms and applications 2014 Pierre Lairez
+ Chapter V: On the periods of the first class of hyper-elliptic integrals 1871 Michael Roberts
+ PDF Chat Hyperlogarithms and Periods in Feynman Amplitudes 2016 Иван Тодоров
+ Periods and Applications 2017 Lucian M. Ionescu
Richard Sumitro
+ Feynman amplitudes, periods and motives : international research workshop, periods and motives - a modern perspective on renormalization, July 2-6, 2012, Instituto de Ciencias Matemáticas, Madrid, Spain 2015 Motives A Modern Perspective on Renormalization
Luis Álvarez-Cónsul
José Ignacio Burgos Gil
Kurusch Ebrahimi–Fard
+ PDF Chat HYPERGEOMETRY INSPIRED BY IRRATIONALITY QUESTIONS 2019 Christian Krattenthaler
Wadim Zudilin
+ Computing period matrices and the Abel-Jacobi map of superelliptic curves 2017 Pascal Molin
Christian Neurohr
+ PDF Chat Hankel continued fractions and Hankel determinants for $q$-deformed metallic numbers 2025 Guo-Niu Han
Emmanuel Pedon
+ Hyperlogarithms and periods in Feynman amplitudes 2016 Иван Тодоров
+ Hyperlogarithms and periods in Feynman amplitudes 2016 Иван Тодоров
+ Rational Numbers with Non-Terminating, Non-Periodic Modified Engel-Type Expansions 1993 Jeffrey Shallit
+ PDF Chat Note on hyperelliptic integrals 1897 Alexander S. Chessin
+ Rational numbers with purely periodic beta-expansions 2009 Anne Siegel