Type: Article
Publication Date: 1976-01-01
Citations: 1
DOI: https://doi.org/10.1090/s0002-9939-1976-0407855-1
In this paper we show that the signature and arithmetic genus of certain aspherical manifolds <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> vanish when the center of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi 1 upper M"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{\pi _1}M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is nontrivial. We make the possibly technical assumption that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi 1 upper M"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{\pi _1}M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is residually finite.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | Characteristic numbers, Jiang subgroup and non-positive curvature | 2022 |
Ping Li |