The signature and arithmetic genus of certain aspherical manifolds

Type: Article

Publication Date: 1976-01-01

Citations: 1

DOI: https://doi.org/10.1090/s0002-9939-1976-0407855-1

Abstract

In this paper we show that the signature and arithmetic genus of certain aspherical manifolds <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> vanish when the center of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi 1 upper M"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{\pi _1}M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is nontrivial. We make the possibly technical assumption that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi 1 upper M"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{\pi _1}M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is residually finite.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Group actions on aspherical 𝐴_{𝑘}(𝑁)-manifolds with nonzero Euler characteristics 1984 Hsü Tung Ku
+ PDF Chat Group actions on aspherical 𝐴_{𝑘}(𝑁)-manifolds 1983 Hsü Tung Ku
Mei Chin Ku
+ PDF Chat Symplectically aspherical manifolds 2008 Jarek Kędra
Yuli B. Rudyak
Aleksy Tralle
+ Erratum to “The signature and the elliptic genus of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>π</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>-finite manifolds with circle actions” [Topology Appl. 136 (1–3) (2004) 251–259] 2010 Haydeé Herrera
Rafael Herrera
+ PDF Chat Four-Manifolds With Surface Fundamental Groups 1997 Alberto Cavicchioli
Friedrich Hegenbarth
Dušan Repovš
+ PDF Chat A congruence for the signature of an embedded manifold 1991 Robert D. Little
+ 𝐴_{∞}-structures associated with pairs of 1-spherical objects and noncommutative orders over curves 2020 Alexander Polishchuk
+ PDF Chat Classifying PL 5-manifolds up to regular genus seven 1994 María Rita Casali
Carlo Gagliardi
+ PDF Chat The invariant of Chen-Nagano on flag manifolds 1993 Cristián U. Sánchez
+ PDF Chat Aspherical manifolds with relatively hyperbolic fundamental groups 2007 Igor Belegradek
+ PDF Chat Classification of circle actions on 4-manifolds 1978 Ronald Fintushel
+ PDF Chat Nonisomorphic algebraic structures on smooth manifolds 1987 Jacek Bochnak
Wojciech Kucharz
+ The signature theorem for manifolds with metric horns 1996 Jochen Brüning
+ The signature and the elliptic genus of π2-finite manifolds with circle actions 2003 Haydeé Herrera
Rafael Herrera
+ A characterisation of symplectically aspherical manifolds 2014 Ayşe Borat
+ PDF Chat On mapping class groups of contractible open 3-manifolds 1993 Robert C. Myers
+ Genera of Curves on a Very General Surface in P3 2015 Ciro Ciliberto
Flaminio Flamini
Mikhail Zaidenberg
+ The gonality theorem of Noether for hypersurfaces 2013 Francesco Bastianelli
Renza Cortini
Pietro De Poi
+ Symplectically aspherical manifolds with nontrivial Flux groups 2016 Ayşe Borat
+ Hyperelliptic 𝐴ᵣ-stable curves (and their moduli stack) 2024 Michele Pernice

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat Characteristic numbers, Jiang subgroup and non-positive curvature 2022 Ping Li