Schubert varieties are arithmetically Cohen-Macaulay

Type: Article

Publication Date: 1985-06-01

Citations: 139

DOI: https://doi.org/10.1007/bf01388607

Locations

  • Inventiones mathematicae - View

Similar Works

Action Title Year Authors
+ Grassmannians and their Schubert subvarieties are arithmetically Cohen-Macaulay 1973 Melvin Hochster
+ Schubert functors and Schubert polynomials 2004 Witold Kraśkiewicz
Piotr Pragacz
+ Normality of Schubert Varieties 1987 V. B. Mehta
V. Srinivas
+ Arithmetically Gorenstein curves on arithmetically Cohen-Macaulay surfaces 2002 Alberto Dolcetti
+ Schubert varieties and generalizations 1998 T. A. Springer
+ Combinatorics and intersections of Schubert varieties 1982 Howard L. Hiller
+ Galois Groups of Schubert Problems 2012 Abraham Martin Del Campo Sanchez
+ PDF Chat A class of Schubert varieties 1970 Yung-Chow Wong
+ Schubert varieties and short braidedness 1998 Chenjie Fan
+ Schubert varieties and Poincaré duality 1980 David Kazhdan
G. Lusztig
+ Schubert varieties and polynomials 1996 William Fulton
+ Schubert Polynomial Multiplication 2018 Sara Amato
+ Equivariant Schubert calculus and geometric Satake 2024 Antoine Labelle
+ Non-arithmetically Cohen–Macaulay schemes of wild representation type 2018 Joan Pons-Llopis
+ Smooth Resolutions of Schubert Schemes 2017 Carlos Contou-Carrère
+ Combinatorics in Schubert varieties and Specht modules 2011 Hwanchul Yoo
+ Cohen-Macaulay rings 2007 Srikanth B. Iyengar
Graham Leuschke
Anton Leykin
Claudia Miller
Ezra Miller
Anurag K. Singh
Uli Walther
+ Cohen-Macaulay varieties, geometric complexes, and combinatorics 2016 Melvin Hochster
+ Degree bounds for the defining equations of arithmetically Cohen-Macaulay varieties 1988 Ng� Vi�t Trung
Giuseppe Valla
+ Stanley-Reisner rings with large multiplicities are Cohen-Macaulay 2006 寺井 直樹