Discrete analogues of singular Radon transforms

Type: Article

Publication Date: 1990-01-01

Citations: 53

DOI: https://doi.org/10.1090/s0273-0979-1990-15973-7

Abstract

The purpose of this paper is to describe recent results we have obtained in finding discrete analogues of the theory of singular integrals on curves, or more generally of "singular Radon transforms," at least in the translation-invariant case.Our theorems are related to estimates for certain exponential sums that arise in number theory; they are also connected with Bourgain's recent maximal ergodic theorem [2,3].The detailed proofs of our results are quite lengthy, and will appear elsewhere.Here we shall limit ourselves to stating the main conclusions, and sketching the motivation and background.We take this opportunity to acknowledge our indebtedness to Guido Weiss and A. De la Torre, whose suggestions were the starting point of this research.

Locations

  • Project Euclid (Cornell University) - View - PDF
  • Bulletin of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Discrete analogues of singular and maximal Radon transforms 1998 Stephen Wainger
+ Discrete analogues in harmonic analysis, I: ℓ 2 estimates for singular radon transforms 1999 Elias M. Stein
Stephen Wainger
+ PDF Chat Discrete Radon transforms and applications to ergodic theory 2007 Alexandru D. Ionescu
Elias M. Stein
Ákos Magyar
Stephen Wainger
+ A note on twisted discrete singular Radon transforms 2010 Lillian B. Pierce
+ A note on twisted discrete singular Radon transforms 2010 Lillian B. Pierce
+ Singular measures and Hausdorff measures 1969 Meir Smorodinsky
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>-estimates for discrete operators of Radon type: Maximal functions and vector-valued estimates 2018 Mariusz Mirek
Elias M. Stein
Bartosz Trojan
+ PDF Chat A note on twisted discrete singular Radon transforms 2010 Lillian B. Pierce
+ $\ell^p\big(\mathbb Z^d\big)$-estimates for discrete operators of Radon type: Maximal functions and vector-valued estimates 2015 Mariusz Mirek
Elias M. Stein
Bartosz Trojan
+ Singular integrals and rectifiability 2016 Daniel Girela Sarrión
+ PDF Chat Singular measures with spectral gaps 1988 Russell Lyons
+ Singular Radon transforms and oscillatory integrals 1989 D. H. Phong
E. M. Stein
+ Discrete Maximal Functions and Ergodic Theorems Related to Polynomials 2004 Ákos Magyar
+ Singular Sets of Uniformly Asymptotically Doubling Measures 2018 A. Dali Nimer
+ PDF Chat Maximal operators and differentiation theorems for sparse sets 2011 Malabika Pramanik
Izabella Łaba
+ Oscillation estimates for truncated singular Radon operators 2022 Wojciech Słomian
+ PDF Chat Products of Singular Continuous Measures 1978 Alan Maclean
+ Frames of Irregular Translates 2010 P. BalazsC . Cabrelli
Sigrid Heineken
Ursula Molter
+ PDF Chat Singular measures without restrictive intervals 1987 Stewart D. Johnson
+ PDF Chat Singular Measures with Spectral Gaps 1988 Russell Lyons