An extension of the theorem on primitive divisors in algebraic number fields

Type: Article

Publication Date: 1993-01-01

Citations: 4

DOI: https://doi.org/10.1090/s0025-5718-1993-1189523-2

Abstract

The theorem about primitive divisors in algebraic number fields is generalized in the following manner. Let <italic>A, B</italic> be algebraic integers, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper A comma upper B right-parenthesis equals 1 comma upper A upper B not-equals 0"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>A</mml:mi> <mml:mi>B</mml:mi> <mml:mo>≠<!-- ≠ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">(A,B) = 1, AB \ne 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <italic>A/B</italic> not a root of unity, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="zeta Subscript k"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>ζ<!-- ζ --></mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\zeta _k}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a primitive root of unity of order <italic>k</italic>. For all sufficiently large <italic>n</italic>, the number <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Superscript n Baseline minus zeta Subscript k Baseline upper B Superscript n"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>A</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>ζ<!-- ζ --></mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>B</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{A^n} - {\zeta _k}{B^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has a prime ideal factor that does not divide <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Superscript m Baseline minus zeta Subscript k Superscript j Baseline upper B Superscript m"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>A</mml:mi> <mml:mi>m</mml:mi> </mml:msup> </mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:msubsup> <mml:mi>ζ<!-- ζ --></mml:mi> <mml:mi>k</mml:mi> <mml:mi>j</mml:mi> </mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>B</mml:mi> <mml:mi>m</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{A^m} - \zeta _k^j{B^m}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for arbitrary <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m greater-than n"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">m &gt; n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="j greater-than k"> <mml:semantics> <mml:mrow> <mml:mi>j</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">j &gt; k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat An Extension of the Theorem on Primitive Divisors in Algebraic Number Fields 1993 A. Schinzel
+ PDF Chat Elementary proofs of the abstract prime number theorem for algebraic function fields 1992 Wen-Bin Zhang
+ A note on non-ordinary primes 2016 Seokho Jin
Wenjun Ma
Ken Ono
+ PDF Chat Divisors in residue classes 1984 H. W. Lenstra
+ PDF Chat A table of quintic number fields 1994 Albert Schwarz
Michael Pohst
Fredéric Diaz
+ PDF Chat A note on zero divisors in group-rings 1972 Jacques Lewin
+ PDF Chat Primitive polynomials over finite fields 1992 Tom Hansen
Gary L. Mullen
+ PDF Chat Zaremba’s conjecture and sums of the divisor function 1993 Thomas W. Cusick
+ PDF Chat Modular field extensions 1975 Nickolas Heerema
David Tucker
+ PDF Chat A lower bound for the class numbers of abelian algebraic number fields with odd degree 1995 Mao Hua Le
+ On fields with Property (B) 2014 Francesco Amoroso
Sinnou David
Umberto Zannier
+ PDF Chat On the divisible part of the Brauer group of a field 1982 Tilmann Würfel
+ An elemental Erdős–Kac theorem for algebraic number fields 2016 Paul Pollack
+ PDF Chat A generalization of Bombieri's prime number theorem to algebraic number fields 1988 Jürgen Hinz
+ PDF Chat On computing the discriminant of an algebraic number field 1985 Theresa P. Vaughan
+ PDF Chat The coefficients of primitive polynomials over finite fields 1996 Wen Bao Han
+ Solvable number field extensions of bounded root discriminant 2013 Jonah Leshin
+ PDF Chat On Weitzenböck’s theorem in positive characteristic 1977 Amassa Fauntleroy
+ PDF Chat On a Galois theory for inseparable field extensions 1975 John N. Mordeson
+ PDF Chat On Sárközy’s theorem for shifted primes 2023 Ben Green