The Mourre estimate for dispersive 𝑁-body Schrödinger operators

Type: Article

Publication Date: 1990-01-01

Citations: 9

DOI: https://doi.org/10.1090/s0002-9947-1990-0970265-4

Abstract

We prove the Mourre estimate for a certain class of dispersive <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding="application/x-tex">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-body Schrödinger operators. Using this estimate we derive some properties of those operators such as the local finiteness of the finite spectrum and the absence of the singular continuous spectrum.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ The Mourre Estimate for Dispersive N-Body Schrodinger Operators 1990 Jan Dereziński
+ PDF Chat Zero energy scattering for one-dimensional Schrödinger operators and applications to dispersive estimates 2015 Iryna Egorova
Markus Holzleitner
Gerald Teschl
+ Dispersive estimates for the Schrodinger equation 2010 William Robert Green
+ Dispersive estimates for Schroedinger operators: A survey 2005 Wilhelm Schlag
+ Limiting Absorption Principle for Schrödinger Operators with Oscillating Potential 2016 Thierry Jecko
Aiman Mbarek
+ Dispersive and Strichartz estimates for Schrödinger equations 2011 治哉 水谷
+ PDF Chat Dispersive estimates for Schrödinger operators in dimension two with obstructions at zero energy 2013 M. Burak Erdoğan
William R. Green
+ Finiteness of the lower spectrum of Schr�dinger operators 1974 John Piepenbrink
+ A new look at Mourre's commutator theory 2006 Sylvain Golénia
Thierry Jecko
+ Dispersive estimates for Schr 2012 M. Burak Erdoğan
William R. Green
+ PDF Chat Finiteness of the lower spectrum of Schrödinger operators with singular potentials 1991 Jörg Donig
+ Limiting absorption principle and resonances for the Dirac operator 1992 Erik Balslev
Bernard Helffer
+ Limiting Absorption Principle for Schrödinger Operators with Oscillating Potential 2016 Thierry Jecko
Aiman Mbarek
+ PDF Chat Dispersive estimates for inhomogeneous fourth-order Schrödinger operator in 3D with zero energy obstructions 2021 Hongliang Feng
+ A Dispersive Bound for Three-Dimensional Schrödinger Operators with Zero Energy Eigenvalues 2010 Michael Goldberg
+ Dispersive Decay 2021 Alexander Komech
Elena Kopylova
+ Dispersive estimates of solutions to the Schrodinger equation in dimensions $n\ge 4$ 2006 Georgi Vodev
+ PDF Chat Semiclassical estimates for the magnetic Schr\"odinger operator on the line 2024 Andrés Larraín-Hubach
Jacob N. Shapiro
+ PDF Chat Semi-classical dispersive estimates 2014 F. F. Cardoso
Claudio Cuevas
Georgi Vodev
+ Dispersive Estimates for the Dirac–Coulomb Equation 2022 Federico Cacciafesta
Éric Séré
Junyong Zhang