Type: Article
Publication Date: 1990-01-01
Citations: 9
DOI: https://doi.org/10.1090/s0002-9947-1990-0970265-4
We prove the Mourre estimate for a certain class of dispersive <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding="application/x-tex">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-body Schrödinger operators. Using this estimate we derive some properties of those operators such as the local finiteness of the finite spectrum and the absence of the singular continuous spectrum.