Paradoxical decompositions and invariant measures

Type: Article

Publication Date: 1991-01-01

Citations: 9

DOI: https://doi.org/10.1090/s0002-9939-1991-1039268-4

Abstract

Suppose <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a certain group of bijections of a given set <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. A subset <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is countably <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-paradoxical if it contains disjoint subsets <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A comma upper B"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">A,B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, each of which can be taken apart into countably many pieces that may be rearranged via <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to form a partition of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that the existence of a countably additive measure on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P left-parenthesis upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">P(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that normalizes <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and vanishes on all countably <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-paradoxical sets implies the existence of a countably additive, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant measure on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P left-parenthesis upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">P(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> normalizing <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Invariant signed measures and the cancellation law 1991 Miklós Laczkovich
+ PDF Chat On sets nonmeasurable with respect to invariant measures 1993 Sławomir Solecki
+ PDF Chat A proof that 𝒞² and 𝒯² are distinct measures 1972 Lawrence R. Ernst
+ PDF Chat Π₁¹ sets of unbounded Loeb measure 1996 Boško Živaljević
+ PDF Chat Nonexistence of invariant measures 1983 David Promislow
+ PDF Chat Extensions of measures invariant under countable groups of transformations 1991 Adam Krawczyk
Piotr Zakrzewski
+ PDF Chat A note on invariant finitely additive measures 1985 S. G. Dani
+ PDF Chat The nonexistence of certain invariant measures 1976 P. Erdős
R. Daniel Mauldin
+ PDF Chat The Hahn decomposition theorem 1980 Raouf Doss
+ PDF Chat Any behaviour of the Mitchell ordering of normal measures is possible 1996 Jiří Witzany
+ PDF Chat A proof that ℋ² and 𝒯² are distinct measures 1974 Lawrence R. Ernst
+ Definable Kőnig theorems 2022 Matt Bowen
Felix Weilacher
+ PDF Chat A note on the combinatorial principles ♢(𝐸) 1978 Keith Devlin
+ 𝐴_{𝑝} weights for nondoubling measures in 𝑅ⁿ and applications 2002 Joan Orobitg
Carlos Pérez
+ PDF Chat Distortion of sets by inner functions 1993 David Hamilton
+ On nonseparable growths of 𝜔 supporting measures 2020 Piotr Borodulin–Nadzieja
Tomasz Żuchowski
+ Hindman spaces 2001 Menachem Kojman
+ PDF Chat 𝑅^{𝑐} is not almost Lindelöf 1970 J. H. B. Kemperman
Dorothy Maharam
+ PDF Chat Equivalence of certain representing measures 1981 Irving Glicksberg
+ PDF Chat Markov operators and quasi-Stonian spaces 1981 Robert E. Atalla