The spectrum of partial differential operators on 𝐿^{𝑝}(𝑅ⁿ)

Type: Article

Publication Date: 1970-01-01

Citations: 11

DOI: https://doi.org/10.1090/s0002-9947-1970-0270211-2

Abstract

The purpose of this paper is to prove that if the polynomial <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P left-parenthesis xi right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ξ<!-- ξ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">P(\xi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> associated with a partial differential operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p Baseline left-parenthesis upper R Superscript n Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p}({R^n})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with constant coefficients, has the growth property, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue upper P left-parenthesis xi right-parenthesis EndAbsoluteValue Superscript negative 1 Baseline equals upper O left-parenthesis StartAbsoluteValue xi EndAbsoluteValue Superscript negative r Baseline right-parenthesis comma StartAbsoluteValue xi EndAbsoluteValue right-arrow normal infinity"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ξ<!-- ξ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>O</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>ξ<!-- ξ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>r</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>ξ<!-- ξ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">|P(\xi ){|^{ - 1}} = O(|\xi {|^{ - r}}),|\xi | \to \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for some <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r greater-than 0"> <mml:semantics> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">r &gt; 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then the spectrum of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is either the whole complex plane or it is the numerical range of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P left-parenthesis xi right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ξ<!-- ξ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">P(\xi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P left-parenthesis xi right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ξ<!-- ξ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">P(\xi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has some additional property (all the coefficients of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P left-parenthesis xi right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ξ<!-- ξ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">P(\xi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> being real, for example), then the spectrum of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the numerical range for those <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> sufficiently close to 2. It is further shown that the growth property alone is not sufficient to ensure that the spectrum of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the numerical range of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P left-parenthesis xi right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ξ<!-- ξ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">P(\xi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ On the index and spectrum of differential operators on ℝ^{ℕ} 2007 Patrick J. Rabier
+ PDF Chat 𝐿^{𝑝} behavior of certain second order partial differential operators 1980 Carlos E. Kenig
Peter A. Tomas
+ PDF Chat A class of 𝐿^{𝑝}-bounded pseudo-differential operators 1975 Reinhard Illner
+ PDF Chat 𝐿^{𝑝}-boundedness of pseudo-differential operators of class 𝑆_{0,0} 1994 Ing-Lung Hwang
R. B. Lee
+ PDF Chat Polynomials and the limit point condition 1975 Robert M. Kauffman
+ PDF Chat Gelfand theory of pseudo differential operators and hypoelliptic operators 1971 Michael E. Taylor
+ PDF Chat Polynomial flows on 𝐶ⁿ 1990 Brian A. Coomes
+ PDF Chat A characterization of hypoelliptic differential operators with variable coefficients 1974 R. E. White
+ PDF Chat Intertwining differential operators for 𝑀𝑝(𝑛,𝑅) and 𝑆𝑈(𝑛,𝑛) 1978 Hans Plesner Jakobsen
+ PDF Chat On differential rings of entire functions 1975 A. H. Cayford
E. G. Straus
+ PDF Chat On factorizations of selfadjoint ordinary differential operators 1982 Antonio Granata
+ None 1999 A. Zabrodin
+ PDF Chat On polynomial density in 𝐴_{𝑞}(𝐷) 1974 Thomas A. Metzger
+ PDF Chat On disconjugacy and 𝑘-point disconjugacy for linear ordinary differential operators 1984 James S. Muldowney
+ Analysis of differential forms 1995 Günter Schwarz
+ Analysis of differential forms 2006 С. И. Новиков
I. A. Taĭmanov
+ PDF Chat A sufficient condition for hyperbolicity of partial differential operators with constant coefficient principal part 1975 Joseph L. Dunn
+ PDF Chat 𝐿^{𝑝} continuity of pseudo-differential operators with discontinuous symbol 1988 Josefina Álvarez
Rafael E. Wilches Durán
+ PDF Chat The Fourier-Bessel series representation of the pseudo-differential operator (-𝑥⁻¹𝐷)^{𝜈} 1992 Om Prakash Singh
J. N. Pandey
+ On a class of differential operators with polynomial coefficients 1973 Yoshimichi Tsuno