Slowly divergent drift in the field-driven Lorentz gas

Type: Article

Publication Date: 1997-10-01

Citations: 9

DOI: https://doi.org/10.1103/physreve.56.3822

Abstract

The dynamics of a point charged particle that moves in a medium of elastic scatterers and is driven by a uniform external electric field is investigated. Using rudimentary approaches, we reproduce, in one dimension, the known results that the typical speed grows with time as ${t}^{1/3}$ and that the leading behavior of the velocity distribution is ${e}^{\ensuremath{-}|v{|}^{3}/t}.$ In spatial dimension $d>1,$ we develop an effective-medium theory that provides a simple and comprehensive description for the motion of a test particle. This approach predicts that the typical speed grows as ${t}^{1/3}$ for all $d,$ while the speed distribution is given by the scaling form $P(u,t)=〈u{〉}^{\ensuremath{-}1}f(u/〈u〉),$ where $u=|v{|}^{3/2},$ $〈u〉\ensuremath{\sim}\sqrt{t},$ and $f(z)\ensuremath{\propto}{z}^{(d\ensuremath{-}1)/3}{e}^{\ensuremath{-}{z}^{2}/2}.$ For a periodic Lorentz gas with an infinite horizon, e.g., for a hypercubic lattice of scatters, a logarithmic correction to the effective-medium result is predicted in which the typical speed grows as $(t\mathrm{ln}{t)}^{1/3}.$

Locations

  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Lorentz Gas at a Positive Temperature 2010 Luca D’Alessio
P. L. Krapivsky
+ PDF Chat Microscopic Theory for Negative Differential Mobility in Crowded Environments 2014 O. Bénichou
Pierre Illien
Gleb Oshanin
Alessandro Sarracino
Raphaël Voituriez
+ PDF Chat Dispersion of particles in an infinite-horizon Lorentz gas 2018 Lior Zarfaty
Alexander Peletskyi
Itzhak Fouxon
Sergey Denisov
Eli Barkai
+ Diffusion in the Lorentz gas 2014 Carl P. Dettmann
+ Diffusion in the Lorentz gas 2014 Carl P. Dettmann
+ Field Theory of Active Brownian Particles in Potentials 2022 Ziluo Zhang
Lili Fehértói-Nagy
Maria Polackova
Gunnar Pruessner
+ PDF Chat Transport of Brownian particles in a narrow, slowly varying serpentine channel 2015 Xinli Wang
Germán Drazer
+ PDF Chat Anomalous Diffusion in the Square Soft Lorentz Gas 2024 Esko Toivonen
Joni Kaipainen
Matti Molkkari
Joonas Keski-Rahkonen
Rainer Klages
E. Räsänen
+ Drift theory of a dense gas interacting with walls in the presence of velocity selective excitation 1985 Michael A. Vaksman
A. V. Gainer
+ PDF Chat Superdiffusive stochastic Fermi acceleration in space and energy 2019 Nikos Sioulas
H. Isliker
L. Vlahos
Argyrios Koumtzis
Theophilos Pisokas
+ Particle drifts in uniform fields 1995
+ Particle drifts in uniform fields 2004
+ Speed Distribution of N Particles in the Thermostated Periodic Lorentz Gas with a Field 2012 Federico Bonetto
N. Chernov
Alexey Korepanov
Joel Lebowitz
+ PDF Chat Field Theory of Active Brownian Particles in Potentials 2023 Ziluo Zhang
Lili Fehértói-Nagy
Maria Polackova
Gunnar Pruessner
+ PDF Chat Driven Lorentz model in discrete time 2024 Dan Shafir
Alessio Squarcini
Stanislav Burov
Thomas Franosch
+ PDF Chat Equilibration and Diffusion for a Dynamical Lorentz Gas 2018 Émilie Soret
+ Stochastic acceleration in a random time-dependent potential 2014 Émilie Soret
Stephan De Bièvre
+ Stochastic acceleration in a random time-dependent potential 2014 Émilie Soret
Stephan De Bièvre
+ Some considerations on exponential flights 2010 Andrea Zoia
E. Dumonteil
Alain Mazzolo
+ PDF Chat On (in)elastic non-dissipative Lorentz gases and the (in)stability of classical pulsed and kicked rotors 2010 B. Aguer
Stephan De Bièvre