Maximal polynomials and the Ilieff-Sendov conjecture

Type: Article

Publication Date: 1990-01-01

Citations: 20

DOI: https://doi.org/10.1090/s0002-9947-1990-0965744-x

Abstract

In this paper, we consider those complex polynomials which have all their roots in the unit disk, one fixed root, and all the roots of their first derivatives as far as possible from a fixed point. We conjecture that any such polynomial has all the roots of its derivative on a circle centered at the fixed point, and as many of its own roots as possible on the unit circle. We prove a part of this conjecture, and use it to define an algorithm for constructing some of these polynomials. With this algorithm, we investigate the 1962 conjecture of Sendov and the 1969 conjecture of Goodman, Rahman and Ratti and (independently) Schmeisser, obtaining counterexamples of degrees <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="6"> <mml:semantics> <mml:mn>6</mml:mn> <mml:annotation encoding="application/x-tex">6</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="8"> <mml:semantics> <mml:mn>8</mml:mn> <mml:annotation encoding="application/x-tex">8</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="10"> <mml:semantics> <mml:mn>10</mml:mn> <mml:annotation encoding="application/x-tex">10</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="12"> <mml:semantics> <mml:mn>12</mml:mn> <mml:annotation encoding="application/x-tex">12</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for the latter.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Maximal Polynomials and the Ilieff-Sendov Conjecture 1990 Michael J. Miller
+ Sendov conjecture for high degree polynomials 2014 Jérôme Dégot
+ PDF Chat Continuous independence and the Ilieff-Sendov conjecture 1992 Michael J. Miller
+ PDF Chat Continuous Independence and the Ilieff-Sendov Conjecture 1992 Michael J. Miller
+ Sendov's conjecture for sufficiently high degree polynomials 2020 Terence Tao
+ The Casas-Alvero conjecture 2015 Giulia Battiston
+ Sendov conjecture for high degree polynomials 2011 Jérôme Dégot
+ Sendov conjecture for high degree polynomials 2011 Jérôme Dégot
+ On the Casas-Alvero conjecture 2011 Jan Draisma
JP de Jong
+ Blaschke Products and Smale’s Conjecture on Complex Polynomials 2024 V. N. Dubinin
+ Sendov's Conjecture: A note on a paper of Dégot 2018 Taboka Chalebgwa
+ Complex Polynomials and Maximal Ranges: Background and Applications 1998 В. В. Андриевскии
Stephan Ruscheweyh
+ Complex Polynomials 2022
+ Sendov's Conjecture: A note on a paper of D\'{e}got 2018 Taboka Chalebgwa
+ The best possible quadratic refinement of Sendov's conjecture 2003 Michael J. Miller
+ A Geometric Modulus Principle for Polynomials 2011 Bahman Kalantari
+ PDF Chat Complex solutions of polynomial equations on the unit circle 2024 Vahagn Aslanyan
+ Complex Numbers and Polynomials 2017 Scott A. Annin
+ On the Sendov conjecture for polynomials with real critical points 1999 Johnny E. Brown
+ Extrema of a Real Polynomial 2004 Liqun Qi