A companion to the Oseledec multiplicative ergodic theorem

Type: Article

Publication Date: 1987-01-01

Citations: 0

DOI: https://doi.org/10.1090/s0002-9939-1987-0877055-7

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F 1 comma upper F 2 comma ellipsis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{F_1},{F_2}, \ldots</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a stationary sequence of continuously differentiable mappings from <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket 0 comma 1 right-bracket"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[0,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into the set of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d times d"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mi>d</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">d \times d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrices. Assume <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F Subscript k Baseline left-parenthesis 0 right-parenthesis equals upper I"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{F_k}(0) = I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for each <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E left-bracket sup Underscript 0 less-than-or-equal-to p less-than-or-equal-to 1 Endscripts StartAbsoluteValue EndAbsoluteValue upper F prime Subscript k Baseline left-parenthesis p right-parenthesis StartAbsoluteValue EndAbsoluteValue right-bracket greater-than normal infinity"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:munder> <mml:mo movablelimits="true" form="prefix">sup</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>0</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:munder> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msubsup> <mml:mi>F</mml:mi> <mml:mi>k</mml:mi> <mml:mo>′</mml:mo> </mml:msubsup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo stretchy="false">]</mml:mo> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">E[{\sup _{0 \leq p \leq 1}}||{F’_k}(p)||] &gt; \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper I"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">I</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {I}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the invariant sigma field for the sequence. Then <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="limit Underscript n right-arrow normal infinity Endscripts upper F Subscript n Baseline left-parenthesis StartFraction 1 Over n EndFraction right-parenthesis midline-horizontal-ellipsis upper F 2 left-parenthesis StartFraction 1 Over n EndFraction right-parenthesis upper F 1 left-parenthesis StartFraction 1 Over n EndFraction right-parenthesis equals exp upper E left-bracket upper F prime 1 left-parenthesis 0 right-parenthesis vertical-bar script upper I right-bracket"> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo form="prefix">lim</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:munder> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>n</mml:mi> </mml:mfrac> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>n</mml:mi> </mml:mfrac> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>n</mml:mi> </mml:mfrac> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>exp</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msubsup> <mml:mi>F</mml:mi> <mml:mn>1</mml:mn> <mml:mo>′</mml:mo> </mml:msubsup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">I</mml:mi> </mml:mrow> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\lim \limits _{n \to \infty } {F_n}\left ( {\frac {1}{n}} \right ) \cdots {F_2}\left ( {\frac {1}{n}} \right ){F_1}\left ( {\frac {1}{n}} \right ) = \exp E[{F’_1}(0)|\mathcal {I}]</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> with probability one.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A dynamical proof of the multiplicative ergodic theorem 1993 Peter Walters
+ PDF Chat A Companion to the Oseledec Multiplicative Ergodic Theorem 1987 Joseph C. Watkins
+ PDF Chat On the dominated ergodic theorem in 𝐿₂ space 1974 M. A. Akcoglu
Louis Sucheston
+ PDF Chat Oseledec’s multiplicative ergodic theorem: a proof 1986 Joel E. Cohen
Harry Kesten
Charles M. Newman
+ A proof of Oseledec’s multiplicative ergodic theorem 1979 M. S. Raghunathan
+ On 𝑑-parameter pointwise ergodic theorems in 𝐿₁ 1995 Shigeru Hasegawa
Ryōtarō Satō
+ PDF Chat Ergodic properties that lift to compact group extensions 1988 E. Arthur Robinson
+ PDF Chat On the uniform ergodic theorem 1974 Michael Lin
+ PDF Chat Strongly ergodic sequences of integers and the individual ergodic theorem 1982 J. R. Blum
J. I. Reich
+ PDF Chat Ergodic theorems of weak mixing type 1976 Lee Jones
Michael Lin
+ PDF Chat Polynomially moving ergodic averages 1988 Mark S. Schwartz
+ PDF Chat On the uniform ergodic theorem. II 1974 Michael Lin
+ PDF Chat Upper bounds for ergodic sums of infinite measure preserving transformations 1990 Jon Aaronson
Manfred Denker
+ PDF Chat On a theorem of P. S. Muhly 1979 Jun-ichi Tanaka
+ PDF Chat On ergodic sequences of measures 1975 J. R. Blum
Robert Cogburn
+ PDF Chat Strong uniform distributions and ergodic theorems 1975 J. R. Blum
L. Hahn
+ PDF Chat A note on the ergodic theorem 1984 Takeshi Yoshimoto
+ PDF Chat <i>Addendum</i> : an Ergodic Theorem 1970 J. F. C. Kingmán
+ PDF Chat Mean ergodic theorems for nonlinear operators 1990 Rainer Wittmann
+ An Ergodic Theorem 1969 J. F. C. Kingmán

Works That Cite This (0)

Action Title Year Authors