An explicit modular equation in two variables for 𝑄(√3)

Type: Article

Publication Date: 1988-01-01

Citations: 8

DOI: https://doi.org/10.1090/s0025-5718-1988-0929553-4

Abstract

A system of modular equations of norm 2 had been found for the Hilbert modular function field of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper Q left-parenthesis StartRoot 2 EndRoot right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {Q}}(\sqrt 2 )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in an earlier issue of this journal. Here an analogous system is found for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper Q left-parenthesis StartRoot 3 EndRoot right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msqrt> <mml:mn>3</mml:mn> </mml:msqrt> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {Q}}(\sqrt 3 )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> but with the help of MACSYMA. There are special difficulties in the fact that two spaces of Hilbert modular functions exist for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper Q left-parenthesis StartRoot 3 EndRoot right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msqrt> <mml:mn>3</mml:mn> </mml:msqrt> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {Q}}(\sqrt 3 )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that can be interchanged by the modular equations. The equations are also a remarkable example of hidden symmetries in the algebraic manifold <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper V 2"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">V</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {V}}_2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which is defined in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper C Superscript 4"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">C</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>4</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {C}}^4}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by the modular equation.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat An explicit modular equation in two variables and Hilbert’s twelfth problem 1982 Harvey Cohn
+ An Explicit Modular Equation in Two Variables for Q(√3) 1988 Harvey Cohn
Jesse Ira Deutsch
+ PDF Chat Fricke’s two-valued modular equations 1988 Harvey Cohn
+ PDF Chat Computing isogeny covariant differential modular forms 2004 Chris Hurlburt
+ On the Fourier coefficients of 2-dimensional vector-valued modular forms 2011 Geoffrey Mason
+ PDF Chat The 27-dimensional module for 𝐸₆. III 1990 Michael Aschbacher
+ PDF Chat On a degenerate principal series of representations of 𝑈(2,2) 1978 Yang Hua
+ An Explicit Modular Equation in Two Variables and Hilbert's Twelfth Problem 1982 Harvey Cohn
+ On the Modular Equation of j(z)^1/3 2000 日出治 伊藤
+ PDF Chat The determinant of the Eisenstein matrix and Hilbert class fields 1985 Isaac Efrat
Peter Sarnak
+ The Hilbert modular group for the field ℚ( $$\sqrt {13} $$ ) 1977 Gerard van der Geer
Don Zagier
+ Symmetric polynomials and 𝑈_{𝑞}(̂𝑠𝑙₂) 2000 Naihuan Jing
+ On 𝑝-adic 𝐿-functions for Hilbert modular forms 2024 John Bergdall
David J. Hansen
+ PDF Chat A dimension formula for Hermitian modular cusp forms of degree two 1987 Min King Eie
+ Hilbert modular forms for the field $$\mathbb{Q}(\sqrt 6 )$$ 1978 Gerard van der Geer
+ PDF Chat Note on representing a prime as a sum of two squares 1972 John Brillhart
+ PDF Chat A 𝑑-dimensional extension of a lemma of Huneke’s and formulas for the Hilbert coefficients 1996 Sam Huckaba
+ PDF Chat 𝐿-series and modular forms of half-integral weight 1994 Rhonda L. Hatcher
+ Resonance of automorphic forms for 𝐺𝐿(3) 2014 Xiumin Ren
Yangbo Ye
+ Iwasawa invariants and class numbers of quadratic fields for the prime 3 1999 Hisao Taya