Type: Article
Publication Date: 2008-02-06
Citations: 38
DOI: https://doi.org/10.1103/physreva.77.022306
We first consider stimulated Raman adiabatic passages in a closed four-level tripod system. In this case, the adiabatic eigenstates of the system acquire real geometric phases. When the system is open and subject to decoherence they acquire complex geometric phases that we determine by a Monte Carlo wave function approach. We calculate the geometric phases and the state evolution in the closed as well as in the open system cases and describe the deviation between these in terms of the phases acquired. When the system is closed, the adiabatic evolution implements a Hadamard gate. The open system implements an imperfect gate and hence has a fidelity below unity. We express this fidelity in terms of the acquired geometric phases.