Embedded Weingarten tori in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math>

Type: Article

Publication Date: 2014-03-17

Citations: 6

DOI: https://doi.org/10.1016/j.aim.2014.02.025

Locations

  • Advances in Mathematics - View

Similar Works

Action Title Year Authors
+ Embedded Weingarten tori in S^3 2013 Simon Brendle
+ A note on Weingarten surfaces in S^3 2013 Simon Brendle
+ PDF Chat Rotational symmetry of Weingarten spheres in homogeneous three-manifolds 2020 José A. Gálvez
Pablo Mira
+ Rotational symmetry of Weingarten spheres in homogeneous three-manifolds 2018 José A. Gálvez
Pablo Mira
+ Rotational symmetry of Weingarten spheres in homogeneous three-manifolds 2018 José A. Gálvez
Pablo Mira
+ Rotational elliptic Weingarten surfaces in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">S</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>×</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi></mml:math>and the Hopf problem 2023 Isabel Fernández
+ PDF Chat Exceptional surgeries in 3-manifolds 2022 Kenneth L. Baker
Neil Hoffman
+ Linear Weingarten surfaces in Euclidean and hyperbolic space 2009 Rafael López
+ PDF Chat Minimal surfaces in $$S^3$$ : a survey of recent results 2013 Simon Brendle
+ Minimal surfaces in S^3: a survey of recent results 2013 Simon Brendle
+ Rotational linear Weingarten surfaces of hyperbolic type 2008 Rafael López
+ Alexandrov immersed minimal tori in S^3 2012 Simon Brendle
+ PDF Chat Alexandrov immersed minimal tori in $S^3$ 2013 Simon Brendle
+ PDF Chat Linear Weingarten hypersurfaces in locally symmetric manifolds 2017 Xiaoli Chao
Peijun Wang
+ Tori embedded in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math> with dense principal lines 2008 Ronaldo Garcia
Jorge Sotomayor
+ Elliptic special Weingarten surfaces of minimal type in $\mathbb{R}^3$ of finite total curvature 2019 José M. Espinar
Héber Mesa
+ Linear Weingarten Surfaces in Euclidean and Hyperbolic Space 2008 Rafael López
+ Rotational Elliptic Weingarten surfaces in S2xR and the Hopf problem 2022 Isabel Fernández
+ PDF Chat Rigidity of linear Weingarten hypersurfaces in locally symmetric manifolds 2016 Luis J. Alı́as
Henrique F. de Lima
Josué Meléndez
Fábio R. dos Santos
+ Toric varieties 2003 Igor Dolgachev