Dense error correction via l1-minimization

Type: Article

Publication Date: 2009-04-01

Citations: 54

DOI: https://doi.org/10.1109/icassp.2009.4960263

Abstract

We study the problem of recovering a non-negative sparse signal x isin Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> from highly corrupted linear measurements y = Ax+e isin Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> , where e is an unknown (and unbounded) error. Motivated by an observation from computer vision, we prove that for highly correlated dictionaries A, any non-negative, sufficiently sparse signal x can be recovered by solving an lscr <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> -minimization problem: min ||x|| <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> + ||e|| <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> subject to y = Ax + e. If the fraction rho of errors is bounded away from one and the support of x grows sublinearly in the dimension m of the observation, for large m, the above lscr <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> -minimization recovers all sparse signals x from almost all sign-and-support patterns of e. This suggests that accurate and efficient recovery of sparse signals is possible even with nearly 100% of the observations corrupted.

Locations

  • arXiv (Cornell University) - View - PDF
  • Illinois Digital Environment for Access to Learning and Scholarship (University of Illinois at Urbana-Champaign) - View - PDF
  • IEEE International Conference on Acoustics Speech and Signal Processing - View
  • IDEALS (University of Illinois Urbana-Champaign) - View - PDF

Similar Works

Action Title Year Authors
+ Dense Error Correction via L1-Minimization 2008 John Wright
Yi Ma
+ Dense Error Correction Via $\ell^1$-Minimization 2010 John Wright
Yi Ma
+ Exact recoverability from dense corrupted observations via $L_1$ minimization 2011 Nam Nguyen
Trac D. Tran
+ PDF Chat Error-Correction for Sparse Support Recovery Algorithms 2022 Mohammad Mehrabi
Aslan Tchamkerten
+ PDF Chat Noisy signal recovery via iterative reweighted L1-minimization 2009 Deanna Needell
+ Enhancing Sparsity by Reweighted L1 Minimization 2007 Emmanuel J. Candès
Michael B. Wakin
Stephen Boyd
+ PDF Chat Error-Correction for Sparse Support Recovery Algorithms 2021 Mohammad Mehrabi
Aslan Tchamkerten
+ Noisy Signal Recovery via Iterative Reweighted L1-Minimization 2009 Deanna Needell
+ PDF Chat On Recovery of Sparse Signals Via $\ell _{1}$ Minimization 2009 Tommaso Cai
Guangwu Xu
Jun Zhang
+ A necessary and sufficient condition for exact sparse recovery by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math> minimization 2012 Charles Dossal
+ Iteratively Re-weighted Least Squares Minimization for Sparse Recovery 2008 Ingrid Daubechies
Ronald DeVore
Massimo Fornasier
C. Sınan Güntürk
+ Iteratively re-weighted least squares minimization for sparse recovery 2008 Ingrid Daubechies
Ronald DeVore
Massimo Fornasier
C. Si̇nan Güntürk
+ On the Performance of Sparse Recovery via L_p-minimization (0<=p <=1) 2010 Meng Wang
Weiyu Xu
Ao Tang
+ Sparse Recovery via ℓ1 Minimization 2020
+ Improved Sparse Recovery Thresholds with Two-Step Reweighted $\ell_1$ Minimization 2010 M. Amin Khajehnejad
Weiyu Xu
Salman Avestimehr
Babak Hassibi
+ Sparse Recovery 2018 Ankur Moitra
+ PDF Chat Representer Theorems for Sparsity-Promoting &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$\ell _{1}$ &lt;/tex-math&gt; &lt;/inline-formula&gt; Regularization 2016 Michaël Unser
Julien Fageot
Harshit Gupta
+ Compressed sensing with corrupted Fourier measurements 2016 Dongcai Su
+ Fast Algorithm for Constrained Linear Inverse Problems 2022 Mohammed Rayyan Sheriff
Floor Fenne Redel
Peyman Mohajerin Esfahani
+ Data recovery from corrupted observations via l1 minimization 2016 Dongcai Su