A unimodality result in the enumeration of subgroups of a finite abelian group

Type: Article

Publication Date: 1987-01-01

Citations: 81

DOI: https://doi.org/10.1090/s0002-9939-1987-0911049-8

Abstract

The number of subgroups of order <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p Superscript k"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>k</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{p^k}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in an abelian group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of order <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{p^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a polynomial in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p comma alpha Subscript left-semidirect-product Baseline left-parenthesis k semicolon p right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>α<!-- α --></mml:mi> <mml:mo>⋋<!-- ⋋ --></mml:mo> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>;</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">p,{\alpha _ \leftthreetimes }(k;p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, determined by the type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="lamda"> <mml:semantics> <mml:mi>λ<!-- λ --></mml:mi> <mml:annotation encoding="application/x-tex">\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is well known that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha Subscript left-semidirect-product Baseline left-parenthesis k semicolon p right-parenthesis equals alpha Subscript left-semidirect-product Baseline left-parenthesis n minus k semicolon p right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>α<!-- α --></mml:mi> <mml:mo>⋋<!-- ⋋ --></mml:mo> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>;</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>α<!-- α --></mml:mi> <mml:mo>⋋<!-- ⋋ --></mml:mo> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>k</mml:mi> <mml:mo>;</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\alpha _ \leftthreetimes }(k;p) = {\alpha _ \leftthreetimes }(n - k;p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Using a recent result from the theory of Hall-Littlewood symmetric functions, we prove that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha Subscript left-semidirect-product Baseline left-parenthesis k semicolon p right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>α<!-- α --></mml:mi> <mml:mo>⋋<!-- ⋋ --></mml:mo> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>;</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\alpha _ \leftthreetimes }(k;p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is a unimodal sequence of polynomials. That is, for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 less-than-or-equal-to k less-than-or-equal-to n slash 2 comma alpha Subscript lamda Baseline left-parenthesis k semicolon p right-parenthesis minus alpha Subscript lamda Baseline left-parenthesis k minus 1 semicolon p right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>k</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>n</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>α<!-- α --></mml:mi> <mml:mi>λ<!-- λ --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>;</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>α<!-- α --></mml:mi> <mml:mi>λ<!-- λ --></mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>;</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">1 \leq k \leq n/2,{\alpha _\lambda }(k;p) - {\alpha _\lambda }(k - 1;p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a polynomial in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with nonnegative coefficients.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the intersection of a class of maximal subgroups of a finite group 1989 Xiu Yun Guo
+ Equality of orders of a set of integers modulo a prime 2021 Olli Järviniemi
+ PDF Chat A characterization of abelian groups 1993 L. Brailovsky
+ PDF Chat The normal index of a maximal subgroup of a finite group 1989 N. P. Mukherjee
Prabir Bhattacharya
+ PDF Chat A method of tabulating the number-theoretic function 𝑔(𝑘) 1992 Renate Scheidler
Hugh C. Williams
+ PDF Chat Multiplicative subgroups of finite index in a division ring 1994 Gerhard Turnwald
+ PDF Chat Additive properties of multiplicative subgroups of finite index in fields 1991 Pedro Berrizbeitia
+ PDF Chat The largest prime dividing the maximal order of an element of 𝑆_{𝑛} 1995 Jon Grantham
+ Nilpotent subgroups of class 2 in finite groups 2021 Luca Sabatini
+ PDF Chat On the number of subgroups of given order in a finite 𝑝-group of exponent 𝑝 1990 Ya. Berkovich
+ Large subgroups of a finite group of even order 2011 Bernhard Amberg
Л. С. Казарин
+ PDF Chat Classification of finite groups with all elements of prime order 1989 Marian Deaconescu
+ PDF Chat Widths of Subgroups 1998 Rita Gitik
Mahan Mitra
Eliyahu Rips
Michah Sageev
+ PDF Chat Intersections of pure subgroups in abelian groups 1981 Delmar Boyer
Kulumani M. Rangaswamy
+ The number of Hall 𝜋-subgroups of a 𝜋-separable group 2004 Alexandre Turull
+ PDF Chat An 𝑛-dimensional subgroup of 𝑅ⁿ⁺¹ 1985 James Keesling
+ Cyclicity conditions for division algebras of prime degree 2003 M. Mahdavi-Hezavehi
Jean-Pierre Tignol
+ PDF Chat Some divisibility properties of the subgroup counting function for free products 1992 Michael Grady
Morris Newman
+ PDF Chat An elementary proof about the order of the elements in a discrete group 1982 G. Crombez
+ PDF Chat Factoring elementary groups of prime cube order into subsets 1998 Sándor Szabó
Coburn Ward