The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view

Type: Article

Publication Date: 2005-10-06

Citations: 55

DOI: https://doi.org/10.1090/s0273-0979-05-01086-4

Abstract

A long-standing and almost folkloric conjecture is that the primes contain arbitrarily long arithmetic progressions. Until recently, the only prog- ress on this conjecture was due to van der Corput, who showed in 1939 that there are infinitely many triples of primes in arithmetic progression. In an amazing fusion of methods from analytic number theory and ergodic theory, Ben Green and Terence Tao showed that for any positive integer <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there exist infinitely many arithmetic progressions of length <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> consisting only of prime numbers. This is an introduction to some of the ideas in the proof, concentrating on the connections to ergodic theory.

Locations

  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • Bulletin of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The Green-Tao theorem: an exposition 2014 David Conlon
Jacob Fox
Yufei Zhao
+ Progressions arithmétiques dans les nombres premiers, d'aprÚs B. Green et T. Tao 2006 Bernard Host
+ PDF Chat Selected mathematical reviews 2005 Andrew Granville
+ Almost arithmetic progressions in the primes and other large sets 2018 Jonathan M. Fraser
+ O teorema de Green-Tao: progressÔes aritméticas de tamanho arbitrariamente grande formadas por primos 2019 Matheus Cunha
+ The Green-Tao theorem for primes of the form $x^2+y^2+1$ 2017 Yu‐Chen Sun
Hao Pan
+ FROM HARMONIC ANALYSIS TO ARITHMETIC COMBINATORICS 2007 Izabella Ɓaba
+ The ergodic theory of geometric progressions 2014 Vladimir I. Arnold
+ PDF Chat From harmonic analysis to arithmetic combinatorics 2007 Izabella Ɓaba
+ Patterns of primes in arithmetic progressions 2015 J. Pintz
+ Almost arithmetic progressions in the primes and other large sets 2018 Jonathan M. Fraser
+ Pointwise ergodic theorem along the prime numbers 1988 ΜátĂ© Wierdl
+ CONTINUED FRACTIONS AND ERGODIC THEORY(Transcendental Numbers and Related Topics) 1986 H. Jager
+ Ergodic Theory of Numbers 2002 Karma Dajani
Cor Kraaikamp
+ Ergodic Theory of Numbers 2004 David W. Boyd
Karma Dajani
Cor Kraaikamp
+ Ergodic theory of numbers 2003
+ Ergodic Theory of Numbers (Book) 2004 David W. Boyd
Gerald B. Folland
+ PDF Chat Cotlar’s Ergodic Theorem Along the Prime Numbers 2015 Mariusz Mirek
Bartosz Trojan
+ A Short Introduction to Ergodic Theory of Numbers 2009 Karma Dajani
Cor Kraaikamp
+ Ergodic theory of continued fractions 2002 Marius Iosifescu
Cor Kraaikamp