Chromatic variants of the Erdős–Szekeres theorem on points in convex position

Type: Article

Publication Date: 2003-04-23

Citations: 35

DOI: https://doi.org/10.1016/s0925-7721(03)00013-0

Locations

  • Computational Geometry - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Two player game variant of the Erd\H os-Szekeres problem 2013 Parikshit Kolipaka
Sathish Govindarajan
+ Two player game variant of the Erdos-Szekeres problem 2012 Parikshit Kolipaka
Sathish Govindarajan
+ Two player game variant of the Erdos-Szekeres problem 2012 Parikshit Kolipaka
Sathish Govindarajan
+ Two extensions of the Erdős-Szekeres problem 2017 Andreas F. Holmsen
Hossein Nassajian Mojarrad
János Pach
Gábor Tardos
+ PDF Chat The Erdos-Szekeres problem on points in convex position – a survey 2000 Walter D. Morris
Valeriu Soltan
+ Two extensions of the Erd\H{o}s-Szekeres problem 2017 Andreas F. Holmsen
Hossein Nassajian Mojarrad
János Pach
Gábor Tardos
+ PDF Chat Erdős–Szekeres Theorem for Point Sets with Forbidden Subconfigurations 2012 Gyula Károlyi
Gézá Tóth
+ PDF Chat Two extensions of the Erdős–Szekeres problem 2020 Andreas F. Holmsen
Hossein Nassajian Mojarrad
János Pach
Gábor Tardos
+ Erdős - Szekeres Theorem for Lines 2013 Imre Bárány
Edgardo Roldán-Pensado
Gézá Tóth
+ On the Erdos-Szekeres convex polygon problem 2016 Andrew Suk
+ On the Erdos-Szekeres convex polygon problem 2016 Andrew Suk
+ Erd\H{o}s - Szekeres Theorem for Lines 2013 Imre Bárány
Edgardo Roldán-Pensado
Gézá Tóth
+ An order-refined and generalized version of the Erdos-Szekeres theorem on convex polygons 2006 Iosif Pinelis
+ On $k$-Gons and $k$-Holes in Point Sets 2014 Oswin Aichholzer
Ruy Fabila‐Monroy
Hernàn González-Aguilar
Thomas Hackl
Marco A. Heredia
Clemens Huemer
Jorge Urrutia
Pável Valtr
Birgit Vogtenhuber
+ PDF Chat A Partitioned Version of the Erd�s?Szekeres Theorem for Quadrilaterals 2003 Attila Pór
+ On k-gons and k-holes in point sets 2014 Oswin Aichholzer
Ruy Fabila‐Monroy
Hernàn González-Aguilar
Thomas Hackl
Marco A. Heredia
Clemens Huemer
Jorge Urrutia
Pável Valtr
Birgit Vogtenhuber
+ PDF Chat Note on the Erdos - Szekeres Theorem 1998 Gézá Tóth
Pável Valtr
+ The Erd{\Ho}s-Faber-Lov\'asz conjecture for geometric graphs 2016 Clemens Huemer
Dolores Lara
Christian Rubio-Montiel
+ A Postscript on Erdos-Szekeres Theorem 2002 Yuqin Zhang
+ Erdős--Szekeres-type problems in the real projective plane 2022 Martin Balko
Manfred Scheucher
Pável Valtr