Infinite sets of primes with fast primality tests and quick generation of large primes

Type: Article

Publication Date: 1989-01-01

Citations: 12

DOI: https://doi.org/10.1090/s0025-5718-1989-0968154-x

Abstract

Infinite sets <italic>P</italic> and <italic>Q</italic> of primes are described, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P subset-of upper Q"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">P \subset Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For any natural number <italic>n</italic> it can be decided if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n element-of upper P"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>P</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">n \in P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in (deterministic) time <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O left-parenthesis left-parenthesis log n right-parenthesis Superscript 9 Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>n</mml:mi> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mn>9</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">O({(\log n)^9})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This answers affirmatively the question of whether there exists an infinite set of primes whose membership can be tested in polynomial time, and is a main result of the paper. Also, for every <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n element-of upper Q"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">n \in Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we show how to randomly produce a proof of the primality of <italic>n</italic>. The expected time is that needed for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 and one half"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding="application/x-tex">1\frac {1}{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> exponentiations <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mod n"> <mml:semantics> <mml:mrow> <mml:mo lspace="thickmathspace" rspace="thickmathspace">mod</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\bmod n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also show how to randomly generate <italic>k</italic>-digit integers which will be in <italic>Q</italic> with probability proportional to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k Superscript negative 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>k</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{k^{ - 1}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Combined with the fast verification of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n element-of upper Q"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">n \in Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> just mentioned, this gives an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O left-parenthesis k Superscript 4 Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>k</mml:mi> <mml:mn>4</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">O({k^4})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> expected time algorithm to generate and certify primes in a given range and is probably the fastest method to generate large certified primes known to belong to an infinite subset. Finally, it is important that <italic>P</italic> and <italic>Q</italic> are relatively dense (at least <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="c n Superscript 2 slash 3 slash log n"> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">c{n^{2/3}}/\log n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> elements less than <italic>n</italic>). Elements of <italic>Q</italic> in a given range may be generated quickly, but it would be costly for an adversary to search <italic>Q</italic> in this range, a property that could be useful in cryptography.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The number of primes is finite 1999 Miodrag Živković
+ Finding 𝐶₃-strong pseudoprimes 2004 Zhenxiang Zhang
+ PDF Chat Sieving the positive integers by small primes 1988 D. A. Goldston
Kevin S. McCurley
+ Strong pseudoprimes to the first eight prime bases 2014 Yupeng Jiang
Yingpu Deng
+ PDF Chat Primality testing and construction of large primes 2006 О. Н. Василенко
+ The set of primes: Towards an optimized algorithm, prime generation and validation, and asymptotic consequences 2008 Gerardo Iovane
+ PDF Chat On large Zsigmondy primes 1988 Walter Feit
+ PDF Chat Very short primality proofs 1987 Carl Pomerance
+ PDF Chat Largest known twin primes and Sophie Germain primes 1999 Karl‐Heinz Indlekofer
Antal A. Járai
+ PDF Chat Infinite Sets of Primes with Fast Primality Tests and Quick Generation of Large Primes 1989 J. Pintz
William Steiger
Endre Szemerédi
+ PDF Chat Fast method for computing the number of primes less than a given limit 1963 David C. Mapes
+ PDF Chat Primes of the form 𝑝=1+𝑚²+𝑛² in short intervals 1998 Jie Wu
+ Long gaps between primes 2017 Kevin Ford
Ben Green
Sergeĭ Konyagin
James Maynard
Terence Tao
+ Fast Generation of Safe Primes using Deterministic Primality Tests based on Maurer Method 2006 Kumakyu Hidehiro
Niwa Akito
+ PDF Chat An upper bound for the sum of large differences between prime numbers 1981 Roger Cook
+ PDF Chat Primes at a glance 1987 R. Kent Guy
C. B. Lacampagne
J. L. Selfridge
+ Approximating the number of integers without large prime factors 2005 Koji Suzuki
+ PDF Chat On integers free of large prime factors 1986 Adolf Hildebrand
Gérald Tenenbaum
+ PDF Chat Some large primes and amicable numbers 1981 Walter Borho
+ PDF Chat Largest known twin primes 1990 B. K. Parady
Joel F. Smith
Sergio E. Zarantonello