Power law deformation of Wishart–Laguerre ensembles of random matrices

Type: Article

Publication Date: 2008-09-01

Citations: 22

DOI: https://doi.org/10.1088/1742-5468/2008/09/p09002

Abstract

We introduce a one-parameter deformation of the Wishart–Laguerre or chiral ensembles of positive definite random matrices with Dyson index β = 1,2 and 4. Our generalized model has a fat-tailed distribution while preserving the invariance under orthogonal, unitary or symplectic transformations. The spectral properties are derived analytically for finite matrix size N × M for all three values of β, in terms of the orthogonal polynomials of the standard Wishart–Laguerre ensembles. For large N in a certain double-scaling limit we obtain a generalized Marčenko–Pastur distribution on the macroscopic scale, and a generalized Bessel law at the hard edge which is shown to be universal. Both macroscopic and microscopic correlations exhibit power law tails, where the microscopic limit depends on β and the difference M−N. In the limit where our parameter governing the power law goes to infinity we recover the correlations of the Wishart–Laguerre ensembles. To illustrate these findings, the generalized Marčenko–Pastur distribution is shown to be in very good agreement with empirical data from financial covariance matrices.

Locations

  • Journal of Statistical Mechanics Theory and Experiment - View
  • Brunel University Research Archive (BURA) (Brunel University London) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ From Wishart to Jacobi ensembles: statistical properties and applications 2008 Pierpaolo Vivo
+ Superstatistical generalisations of Wishart-Laguerre ensembles of random matrices 2008 A. Y. Abul-Magd
Gernot Akemann
Pierpaolo Vivo
+ Superstatistical generalizations of Wishart–Laguerre ensembles of random matrices 2009 A. Y. Abul-Magd
Gernot Akemann
Pierpaolo Vivo
+ PDF Chat CDT as a scaling limit of matrix models 2011 J. Ambjørn
+ PDF Chat Non-Hermitian extensions of Wishart random matrix ensembles 2011 Gernot Akemann
+ PDF Chat Asymmetric random matrices: What do we need them for? 2011 Stanisław Drożdż
Jarosław Kwapień
Andreas A. Ioannides
+ PDF Chat Eigenvalues and Singular Values of Products of Rectangular Gaussian Random Matrices (The Extended Version) 2011 Z. Burda
Maciej A. Nowak
Andrzej Jarosz
Giacomo Livan
Artur Święch
+ PDF Chat Moments of Wishart-Laguerre and Jacobi ensembles of random matrices: application to the quantum transport problem in chaotic cavities 2011 Giacomo Livan
Pierpaolo Vivo
+ PDF Chat Invariant β-Wishart ensembles, crossover densities and asymptotic corrections to the Marčenko–Pastur law 2012 Romain Allez
Jean‐Philippe Bouchaud
Satya N. Majumdar
Pierpaolo Vivo
+ Non-Hermitian extensions of Wishart random matrix ensembles 2011 Gernot Akemann
+ PDF Chat None 2011 M.H. Lee
+ PDF Chat None 2011 Wojciech Roga
Marek Smaczyński
Karol Życzkowski
+ PDF Chat None 2011 Vyacheslav L. Girko
+ Beta laguerre ensembles in global regime 2019 Hoang Dung Trinh
Khanh Duy Trinh
+ On the Numerical Evaluation of Distributions in Random Matrix Theory: A Review with an Invitation to Experimental Mathematics 2009 Folkmar Bornemann
+ Beta Laguerre ensembles in global regime 2019 Hoang Dung Trinh
Khanh Duy Trinh
+ Beta Laguerre ensembles in global regime 2019 Hoang Dung Trinh
Khanh Duy Trinh
+ On the Numerical Evaluation of Distributions in Random Matrix Theory: A Review 2009 Folkmar Bornemann
+ PDF Chat Cauchy–Laguerre Two-Matrix Model and the Meijer-G Random Point Field 2013 Marco Bertola
M. Gekhtman
Jacek Szmigielski
+ PDF Chat Generalized Christoffel–Darboux formula for classical skew-orthogonal polynomials 2008 Saugata Ghosh