Superfast Tikhonov Regularization of Toeplitz Systems

Type: Article

Publication Date: 2014-06-19

Citations: 2

DOI: https://doi.org/10.1109/tsp.2014.2330800

Abstract

Toeplitz-structured linear systems arise often in practical engineering problems. Correspondingly, a number of algorithms have been developed that exploit Toeplitz structure to gain computational efficiency when solving these systems. Early “fast” algorithms required <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$ {\cal O}(n^{2})$</tex></formula> operations, but recent “superfast” algorithms are more efficient. In this work, we present a superfast algorithm for Tikhonov regularization of Toeplitz systems. Using an “extension-and-transformation” technique, our algorithm translates a Tikhonov-regularized Toeplitz system into a type of specialized polynomial problem known as tangential interpolation. Under this formulation, we can compute the solution in only <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$ {\cal O}(KN\log ^{2} N)$</tex></formula> operations, where <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$K$</tex></formula> is the number of regularizers and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$N$</tex></formula> is on the order of the number of parameters defining the system matrix. Our algorithm is further improved with displacement structure, which reduces the complexity when solving the system for multiple input vectors. We use numerical simulations to demonstrate our algorithm's complexity and accuracy.

Locations

  • IEEE Transactions on Signal Processing - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Stabilized superfast Toeplitz solvers based on interpolation 1998 G Heinig
Marc Van Barel
Peter Kravanja
+ A superfast method for solving Toeplitz linear least squares problems 2003 Marc Van Barel
Georg Heinig
Peter Kravanja
+ A superfast algorithm to solve Toeplitz systems 1998 Marc Van Barel
+ &lt;title&gt;Unified superfast algorithm for confluent tangential interpolation problems and for structured matrices&lt;/title&gt; 1999 Vadim Olshevsky
Mohammad Amin Shokrollahi
+ A superfast variant of Ming Gu's methods to solve least squares toeplitz problems 2001 Marc Van Barel
Nicola Mastronardi
Peter Kravanja
+ A superfast method for solving least squares Toeplitz problems 2000 Marc Van Barel
G Heinig
Peter Kravanja
+ A Stabilized Superfast Solver for Nonsymmetric Toeplitz Systems 2001 Marc Van Barel
Georg Heinig
Peter Kravanja
+ Stabilized superfast Toeplitz solvers via rational interpolation 1998 Marc Van Barel
G Heinig
Peter Kravanja
+ &lt;title&gt;Algorithms for solving rational interpolation problems related to fast and superfast solvers for Toeplitz systems&lt;/title&gt; 1999 Peter Kravanja
Marc Van Barel
+ A superfast method for solving least squares Toeplitz problems based on an inversion formula 2001 Marc Van Barel
G Heinig
Peter Kravanja
+ PDF Chat Fast solvers for tridiagonal Toeplitz linear systems 2020 Zhongyun Liu
Shan Li
Yin Yi
Yulin Zhang
+ Superfast solution of Toeplitz systems based on syzygy reduction 2013 Houssam Khalil
Bernard Mourrain
Michelle Schatzman
+ Superfast solution of Toeplitz systems based on syzygy reduction 2013 Houssam Khalil
Bernard Mourrain
Michelle Schatzman
+ PDF Chat Even-order Toeplitz tensor: framework for multidimensional structured linear systems 2019 Mansoor Rezghi
Maryam Amirmazlaghani
+ Stabilized Superfast Toeplitz Solvers 1999 G Heinig
Peter Kravanja
Marc Van Barel
+ PDF Chat A fast Solver for Pentadiagonal Toeplitz Systems 2024 Shahin Hasanbeigi
+ Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices 2014 Matthias Bolten
Marco Donatelli
Thomas Huckle
Christos Kravvaritis
+ A new superfast direct method for solving centrosymmetric Toeplitz-plus-Hankel systems 2003 Gianni Codevico
Marc Van Barel
G Heinig
+ PDF Chat An Efficient and Stable Parallel Solution for Non-symmetric Toeplitz Linear Systems 2005 Pedro Alonso
José M. Badía
Antonio M. Vidal
+ A fast algorithm for solving a Toeplitz system 2010 Xiangjian Xu

Works That Cite This (0)

Action Title Year Authors