On the locus of Hodge classes

Type: Article

Publication Date: 1995-01-01

Citations: 122

DOI: https://doi.org/10.1090/s0894-0347-1995-1273413-2

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a nonsingular complex algebraic variety and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper V"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">V</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {V}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a polarized variation of Hodge structure of weight <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 p"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>p</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">2p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with polarization form <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Q"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding="application/x-tex">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Given an integer <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S Superscript left-parenthesis upper K right-parenthesis"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>S</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{S^{(K)}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the space of pairs <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis s comma u right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(s,u)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s element-of upper S"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>S</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">s \in S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u element-of script upper V Subscript s"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">V</mml:mi> </mml:mrow> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">u \in {\mathcal {V}_s}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> integral of type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis p comma p right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(p,p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Q left-parenthesis u comma u right-parenthesis less-than-or-equal-to upper K"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">Q(u,u) \leq K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show in Theorem 1.1 that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S Superscript left-parenthesis upper K right-parenthesis"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>S</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{S^{(K)}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an algebraic variety, finite over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. When <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper V"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">V</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {V}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the local system <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript 2 p Baseline left-parenthesis upper X Subscript s Baseline comma double-struck upper Z right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Z</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^{2p}}({X_s},\mathbb {Z})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>/torsion associated with a family of nonsingular projective varieties parametrized by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the result implies that the locus where a given integral class of type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis p comma p right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(p,p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> remains of type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis p comma p right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(p,p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is algebraic.

Locations

  • Journal of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The cohomology of a variation of polarized Hodge structures over a quasi-compact Kähler manifold 2007 Jürgen Jost
Yi-Hu Yang
Kang Zuo
+ PDF Chat On the Locus of Hodge Classes 1995 Eduardo Cattani
Pierre Deligne
Aroldo Kaplan
+ PDF Chat On the Picard-Lefschetz transformation for algebraic manifolds acquiring general singularities 1973 Alan Landman
+ Differential operators on a polarized abelian variety 2002 Indranil Biswas
+ PDF Chat Algebraic cycles and the Hodge structure of a Kuga fiber variety 1993 Basil Gordon
+ PDF Chat On polarized surfaces (𝑋,𝐿) with ℎ⁰(𝐿)&gt;0, 𝜅(𝑋)=2, and 𝑔(𝐿)=𝑞(𝑋) 1996 Yoshiaki Fukuma
+ On motivic vanishing cycles of critical loci 2019 Vittoria Bussi
Dominic Joyce
Sven Meinhardt
+ PDF Chat On sectional genus of quasi-polarized 3-folds 1999 Yoshiaki Fukuma
+ On vector bundles over moduli spaces trivial on Hecke curves 2021 Indranil Biswas
Tomás L. Gómez
+ PDF Chat On the cohomology Chern classes of the 𝐾-theory Chern classes 1970 Mi-Soo Bae Smith
Larry Smith
+ Threefolds with vanishing Hodge cohomology 2004 Jing Zhang
+ PDF Chat Betti and Hodge numbers of configuration spaces of a punctured elliptic curve from its zeta functions 2022 Gilyoung Cheong
Yifeng Huang
+ PDF Chat An algorithm for Hodge ideals 2022 Guillem Blanco
+ Hodge structures for orbifold cohomology 2006 Javier Fernández
+ Tame topology of arithmetic quotients and algebraicity of Hodge loci 2020 Benjamin Bakker
Bruno Klingler
Jacob Tsimerman
+ Lefschetz classes on projective varieties 2017 June Huh
Botong Wang
+ PDF Chat Deligne–Lusztig duality on the moduli stack of bundles 2023 Lin Chen
+ Homogeneous ideals associated to a smooth subvariety 2011 Yuhan Liu
+ On cubic elliptic varieties 2015 Jürgen Hausen
Antonio Laface
Andrea Luigi Tironi
Luca Ugaglia
+ PDF Chat On the variety of plane curves of degree 𝑑 with 𝛿 nodes and 𝜅 cusps 1989 Pyung-Lyun Kang