On some inequalities for the incomplete gamma function

Type: Article

Publication Date: 1997-01-01

Citations: 366

DOI: https://doi.org/10.1090/s0025-5718-97-00814-4

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p not-equals 1"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≠<!-- ≠ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p\ne 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a positive real number. We determine all real numbers <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha equals alpha left-parenthesis p right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo>=</mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\alpha = \alpha (p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="beta equals beta left-parenthesis p right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>β<!-- β --></mml:mi> <mml:mo>=</mml:mo> <mml:mi>β<!-- β --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\beta =\beta (p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the inequalities <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket 1 minus e Superscript minus beta x Super Superscript p Superscript Baseline right-bracket Superscript 1 slash p Baseline greater-than StartFraction 1 Over normal upper Gamma left-parenthesis 1 plus 1 slash p right-parenthesis EndFraction integral Subscript 0 Superscript x Baseline e Superscript minus t Super Superscript p Baseline d t greater-than left-bracket 1 minus e Superscript minus alpha x Super Superscript p Superscript Baseline right-bracket Superscript 1 slash p"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>β<!-- β --></mml:mi> <mml:msup> <mml:mi>x</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> </mml:msup> <mml:msup> <mml:mo stretchy="false">]</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo>&gt;</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:mfrac> <mml:msubsup> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mn>0</mml:mn> <mml:mi>x</mml:mi> </mml:msubsup> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:msup> <mml:mi>t</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> </mml:msup> <mml:mspace width="thinmathspace" /> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:msup> <mml:mi>x</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> </mml:msup> <mml:msup> <mml:mo stretchy="false">]</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">[1-e^{-\beta x^p}]^{1/p}&gt; \frac 1{\Gamma (1+1/p)} \int ^x_0 e^{-t^p} \,dt &gt;[1-e^{-\alpha x^p}]^{1/p}</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> are valid for all <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x greater-than 0"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">x&gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. And, we determine all real numbers <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a"> <mml:semantics> <mml:mi>a</mml:mi> <mml:annotation encoding="application/x-tex">a</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="b"> <mml:semantics> <mml:mi>b</mml:mi> <mml:annotation encoding="application/x-tex">b</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="minus log left-parenthesis 1 minus e Superscript minus a x Baseline right-parenthesis less-than-or-equal-to integral Subscript x Superscript normal infinity Baseline StartFraction e Superscript negative t Baseline Over t EndFraction d t less-than-or-equal-to minus log left-parenthesis 1 minus e Superscript minus b x Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>a</mml:mi> <mml:mi>x</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:msubsup> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>x</mml:mi> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msubsup> <mml:mfrac> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>t</mml:mi> </mml:mrow> </mml:msup> <mml:mi>t</mml:mi> </mml:mfrac> <mml:mspace width="thinmathspace" /> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>b</mml:mi> <mml:mi>x</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">-\log (1-e^{-ax})\le \int ^\infty _x \frac {e^{-t}}t\,dt\le -\log (1-e^{-bx})</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> hold for all <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x greater-than 0"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">x&gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Mathematics of Computation - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Some extensions of W. Gautschi’s inequalities for the gamma function 1983 D. Kershaw
+ PDF Chat Further inequalities for the gamma function 1984 Andrea Laforgia
+ PDF Chat Some inequalities for entire functions of exponential type 1995 Robert B. Gardner
N. K. Govil
+ PDF Chat Some inequalities for entire functions 1980 Saburou Saitoh
+ PDF Chat Some gamma function inequalities 1993 Horst Alzer
+ PDF Chat Inequalities for the incomplete gamma function 2000 Pierpaolo Natalini
Biagio Palumbo
+ PDF Chat On Some Complete Monotonicity of Functions Related to Generalized <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mi>k</mi> <mo>−</mo> </math>Gamma Function 2021 H.M. Moustafa
Hanan Almuashi
Mansour Mahmoud
+ PDF Chat An inequality for functions of exponential type not vanishing in a half-plane 1977 N. K. Govil
+ INEQUALITIES ASSOCIATED WITH RATIOS OF GAMMA FUNCTIONS 2018 Jenică Crînganu
+ Inequalities involving gamma and digamma functions 2014 Horst Alzer
Chao-Ping Chen
+ Functional inequalities for the incomplete gamma function 2011 Horst Alzer
Árpád Baricz
+ Some Elementary Inequalities Relating to the Gamma and Incomplete Gamma Function 1959 Walter Gautschi
+ PDF Chat Monotonicity of the incomplete gamma function with applications 2016 Zhen-Hang Yang
Wen Zhang
Yu‐Ming Chu
+ PDF Chat 𝐿^{𝑝} inequalities for entire functions of exponential type 1990 Q. I. Rahman
Gerhard Schmeißer
+ GENERALIZATION OF SOME INEQUALITIES FOR THE (q1;:::; qs)-GAMMA FUNCTION 2012 Toufik Mansour
+ • SOME INEQUALITIES CONCERNING Q-GAMMA FUNCTIONS 2011 W. T. Sulaiman
+ Inequalities for the Incomplete Gamma and Related Functions 1999 Feng Qi
Senlin Guo
+ Inequalities for the incomplete gamma function 2013 Banyat Sroysang
+ Completely monotonic functions and inequalities associated to some ratio of gamma function 2014 Cristinel Mortici
Valentin Cristea
Dawei Lu
+ Some Gamma Function Inequalities 2006 Necdet Batır