We characterize those functions f:ℂ → ℂ definable in o-minimal expansions of the reals for which the structure (ℂ,+, f) is strongly minimal: such functions must be complex constructible, possibly after conjugating by a real matrix. In particular we prove a special case of the Zilber Dichotomy: an algebraically closed field is definable in certain strongly minimal structures which are definable in an o-minimal field.