Global Well-Posedness for Schrödinger Equations with Derivative

Type: Article

Publication Date: 2001-01-01

Citations: 131

DOI: https://doi.org/10.1137/s0036141001384387

Abstract

We prove that the one-dimensional Schrödinger equation with derivative in the nonlinear term is globally well-posed in Hs for s>2/3, for small L2 data. The result follows from an application of the "I-method." This method allows us to define a modification of the energy norm H1 that is "almost conserved" and can be used to perform an iteration argument. We also remark that the same argument can be used to prove that any quintic nonlinear defocusing Schrödinger equation on the line is globally well-posed for large data in Hs, for s>2/3.

Locations

  • SIAM Journal on Mathematical Analysis - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • SIAM Journal on Mathematical Analysis - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ GLOBAL WELL-POSEDNESS FOR SCHR ¨ ODINGER EQUATIONS WITH DERIVATIVE ∗ 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ Global well-posedness for Schrödinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terry Tao
+ PDF Chat A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative 2002 J. Colliander
M. Keel
G. Staffilani
Hideo Takaoka
Terence Tao
+ A refined global well-posedness result for Schrodinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ PDF Global Well-Posedness of the Derivative Nonlinear Schroedinger Equations on T 2010 Yin Yin Su Win
+ Global well-posedness and polynomial bounds for the defocusing $L^{2}$-critical nonlinear Schrödinger equation in $\R$ 2007 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Global Well-posedness for the Biharmonic Quintic Nonlinear Schrödinger Equation on $\mathbb{R}^2$ 2022 Engin Başakoğlu
T. Burak Gürel
Oğuz Yılmaz
+ Sharp global well-posedness for 1D NLS with derivatives 2012 Qingtang Su
+ Global well-posedness for the defocusing, quintic nonlinear Schrödinger equation in one dimension 2009 Benjamin Dodson
+ Global well-posedness and polynomial bounds for the defocusing $L^{2}$-critical nonlinear Schr\"odinger equation in $\R$ 2007 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^{2}(\R)$ 2024 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica Vişan
+ PDF Global well-posedness on the derivative nonlinear Schrödinger equation 2015 Yifei Wu
+ The Cauchy problem for the semilinear quintic Schrödinger equation in one dimension,the defocusing case 2002 Nikolaos Tzirakis
+ Global Well-Posedness and Polynomial Bounds for the Defocusing<i>L</i><sup>2</sup>-Critical Nonlinear Schrödinger Equation in ℝ 2008 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^2(\mathbb{R})$ 2022 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica Vişan
+ Almost Morawetz estimates and global well-posedness for the defocusing $L^2$-critical nonlinear Schr{ö}dinger equation in higher dimensions 2009 Benjamin Dodson
+ Correction to “Global Well-Posedness and Polynomial Bounds for the Defocusing<i>L</i><sup>2</sup>-Critical Nonlinear Schrödinger Equation in ℝ” 2010 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ The derivative nonlinear Schrödinger equation on the half line 2018 M. Burak Erdoğan
T.B. Gürel
Nikolaos Tzirakis
+ PDF Small data well-posedness for derivative nonlinear Schrödinger equations 2018 Donlapark Pornnopparath
+ Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space 2013 Yifei Wu

Works That Cite This (129)

Action Title Year Authors
+ Global Well-posedness of the 1D Dirac-Klein-Gordon system in Sobolev spaces of negative index 2008 Achenef Tesfahun
+ Global existence for semilinear Schrödinger equations in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math>dimensions 2007 Hua Wang
Shangbin Cui
+ Global well-posedness for the mass-critical nonlinear Schrödinger equation on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="double-struck">T</mml:mi></mml:math> 2011 Yongsheng Li
Yifei Wu
Guixiang Xu
+ PDF On the well-posedness problem for the derivative nonlinear Schrödinger equation 2023 Rowan Killip
Maria Ntekoume
Monica Vişan
+ Global attractor for the periodic generalized Korteweg-De Vries equation through smoothing 2022 Ryan McConnell
+ Asymptotic Behavior of the Nonlinear Schrödinger Equation with Harmonic Trapping 2015 Zaher Hani
Laurent Thomann
+ PDF Chat On a Class of Solutions to the Generalized Derivative Schrödinger Equations 2019 Felipe Linares
Gustavo Ponce
Gleison N. Santos
+ PDF Quasicollapse of oblique solitons of the weakly dissipative derivative nonlinear Schrödinger equation 2010 G. Sánchez‐Arriaga
D. Laveder
T. Passot
P. L. Sulem
+ PDF Chat Randomization and the Gross–Pitaevskii Hierarchy 2015 Vedran Sohinger
Gigliola Staffilani
+ Low regularity global well-posedness for the two-dimensional Zakharov system 2009 Daoyuan Fang
Hartmut Pecher
Sijia Zhong