Oscillatory integrals related to Carleson’s theorem

Type: Article

Publication Date: 2001-01-01

Citations: 80

DOI: https://doi.org/10.4310/mrl.2001.v8.n6.a9

Abstract

now define the corresponding maximal operator by taking the sup over all the coefficients λ = (λα), that is with each λα ranging over R. What are the chances that such a wider result holds? There are a number of specific facts that suggests that this may be true. First is the situation which occurs when, in effect, the “stopping times” involved are themselves polynomials in x. This means we consider operators of the form T (f)(x) = ∫

Locations

  • Mathematical Research Letters - View - PDF

Similar Works

Action Title Year Authors
+ Oscillatory integrals involving the Carleson–Sjölin conditions and several applications 2021 Changxing Miao
Jianwei-Urbain Yang
+ Damped Oscillatory Integrals and Maximal Operators 2005 Isroil A. Ikromov
+ Restriction theorems and maximal operators related to oscillatory integrals in ℝ3 1999 Adela Moyua
Ana Vargas
Luis Vega
+ A polynomial Carleson operator along the paraboloid 2015 Lillian B. Pierce
Po‐Lam Yung
+ PDF Chat A polynomial Carleson operator along the paraboloid 2019 Lillian B. Pierce
Po‐Lam Yung
+ PDF Chat Oscillatory integrals and Schrödinger maximal operators 1997 Lawrence A. Kolasa
+ Damped Oscillatory Integrals and the Boundedness Problem for Maximal Operators 2005 Isroil A. Ikromov
+ Estimates of Oscillatory Integrals with a Damping Factor 2018 Isroil A. Ikromov
Sh. A. Muranov
+ Oscillatory integrals 1996 Yu. Safarov
Dmitri Vassiliev
+ Maximal estimates for an oscillatory operator 2022 Jiecheng Chen
Dashan Fan
Fayou Zhao
+ Some phases of oscillatory integrals 2011 V. N. Karpushkin
+ Hörmander oscillatory integral operators: A revisit 2024 Chuanwei Gao
Zhong Gao
Changxing Miao
+ Maximal estimates for oscillatory integrals with concave phase 1995 Björn G. Walther
+ Chapter 5. Oscillatory integrals without convexity 2010 Michael Ruzhansky
James Smith
Michael Ruzhansky
James Smith
+ Estimates for Oscillatory Integral Operators 2002 Slava Rychkov
+ On the endpoint behaviour of oscillatory maximal functions 2020 Tainara Borges
Cynthia Bortolotto
João P. G. Ramos
+ PDF Chat Chapter 4. Oscillatory integrals with convexity 2010 Michael Ruzhansky
James Smith
Michael Ruzhansky
James Smith
+ PDF Chat Some oscillatory integrals and their applications 1985 Elias M. Stein
+ On a stopping process for oscillatory integrals 1994 D. H. Phong
E. M. Stein
+ Maximal estimates for oscillatory and other Fourier transforms 1995 Björn G. Walther

Works That Cite This (79)

Action Title Year Authors
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>-estimates for discrete operators of Radon type: Maximal functions and vector-valued estimates 2018 Mariusz Mirek
Elias M. Stein
Bartosz Trojan
+ $\ell^p\big(\mathbb Z^d\big)$-estimates for discrete operators of Radon type: Maximal functions and vector-valued estimates 2015 Mariusz Mirek
Elias M. Stein
Bartosz Trojan
+ Discrete analogues of maximally modulated singular integrals of Stein-Wainger type, II 2021 Ben Krause
Joris Roos
+ Sparse Bounds for Maximally Truncated Oscillatory Singular Integrals 2017 Ben Krause
Michael T. Lacey
+ The (weak-$L^2$) Boundedness of The Quadratic Carleson Operator 2007 Victor Lie
+ A Discrete Quadratic Carleson Theorem on $ \ell ^2 $ with a Restricted Supremum 2015 Ben Krause
Michael T. Lacey
+ Sparse Bounds for Maximal Monomial Oscillatory Hilbert Transforms 2016 Ben Krause
Michael T. Lacey
+ Discrete Analogues in Harmonic Analysis: Directional Maximal Functions in $\mathbb{Z}^2$ 2019 Laura Cladek
Ben Krause
+ A Weak Type Inequality for Maximal Monomial Oscillatory Hilbert Transforms 2016 Ben Krause
Michael T. Lacey
+ Uniform bounds for oscillatory and polynomial Carleson operators 2020 João P. G. Ramos