Type: Article
Publication Date: 1992-01-01
Citations: 114
DOI: https://doi.org/10.1090/s0273-0979-1992-00318-x
O. H. Keller conjectured in 1930 that in any tiling of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbb {R}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by unit <italic>n</italic>-cubes there exist two of them having a complete facet in common. O. Perron proved this conjecture for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n less-than-or-equal-to 6"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>6</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \leq 6</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that for all <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-equal-to 10"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>10</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \geq 10</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there exists a tiling of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbb {R}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by unit <italic>n</italic>-cubes such that no two <italic>n</italic>-cubes have a complete facet in common.
Action | Title | Year | Authors |
---|---|---|---|
+ | A reduction of Keller's conjecture | 1986 |
Sylvia Szabo |
+ | A REDUCTION OF KELLER'S CONJECTURE | 1986 |
Sandor Szab |