Keller’s cube-tiling conjecture is false in high dimensions

Type: Article

Publication Date: 1992-01-01

Citations: 114

DOI: https://doi.org/10.1090/s0273-0979-1992-00318-x

Abstract

O. H. Keller conjectured in 1930 that in any tiling of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbb {R}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by unit <italic>n</italic>-cubes there exist two of them having a complete facet in common. O. Perron proved this conjecture for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n less-than-or-equal-to 6"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>6</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \leq 6</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that for all <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-equal-to 10"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>10</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \geq 10</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there exists a tiling of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbb {R}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by unit <italic>n</italic>-cubes such that no two <italic>n</italic>-cubes have a complete facet in common.

Locations

  • arXiv (Cornell University) - View - PDF
  • Bulletin of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Keller's cube-tiling conjecture is false in high dimensions 1992 Jeffrey C. Lagarias
Peter W. Shor
+ Keller's cube-tiling conjecture is false in high dimensions 1992 Jeffrey C. Lagarias
Peter W. Shor
+ PDF Chat Towards resolving Keller’s cube tiling conjecture in dimension seven 2022 Andrzej P. Kisielewicz
+ PDF Chat Cube slicing in 𝑅ⁿ 1986 Keith Ball
+ The number of gridpoints on hyperplane sections of the 𝑑-dimensional cube 2018 Ulrich Abel
+ PDF Chat Keller properties for integer tiling 2024 Benjamin Baker Bruce
Izabella Łaba
+ PDF Chat The hexagonal packing lemma and Rodin Sullivan conjecture 1994 Dov Aharonov
+ PDF Chat Keller's Conjecture Revisited 2022 Peter Horák
Dongryul Kim
+ Towards Resolving Keller's Cube Tiling Conjecture in Dimension Seven 2017 Andrzej P. Kisielewicz
+ Minkowski’s conjecture, well-rounded lattices and topological dimension 2005 Curtis T. McMullen
+ Fuglede’s conjecture fails in dimension 4 2005 Máté Matolcsi
+ A Solution of the Grunbaum-Shephard Conjecture on Convex Isohedral Tilings 2016 W. Kuperberg
G. C. Shephard
+ Tilings* 2010 Federico Ardila
Richard P. Stanley
+ PDF Chat Crumpled cubes that are not highly complex 1978 Robert J. Daverman
+ On self-affine tiles whose boundary is a sphere 2019 Jörg Μ. Thuswaldner
Shuqin Zhang
+ Tilings 2005 Federico Ardila
Richard P. Stanley
+ PDF Chat On Keller’s Conjecture in Dimension Seven 2015 Andrzej P. Kisielewicz
Magdalena Łysakowska
+ No lattice tiling of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math> by Lee sphere of radius 2 2019 Ka Hin Leung
Yue Zhou
+ PDF Chat Dimension theory 1973 Abraham Zaks
+ Enumeration formula for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si16.gif" display="inline" overflow="scroll"><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>-cubes in discrete planes 2012 Éric Domenjoud
Damien Jamet
Damien Vergnaud
Laurent Vuillon

Works Cited by This (2)

Action Title Year Authors
+ A reduction of Keller's conjecture 1986 Sylvia Szabo
+ A REDUCTION OF KELLER'S CONJECTURE 1986 Sandor Szab