The Profile of Binary Search Trees

Type: Article

Publication Date: 2001-11-01

Citations: 58

DOI: https://doi.org/10.1214/aoap/1015345394

Abstract

We characterize the limiting behavior of the number of nodes in level k of binary search trees T n in the central region 1 2 log n ≤ k ≤ 2 8 log n.Especially we show that the width V n (the maximal number of internal nodes at the same level) satisfies V n ∼ n/ 4π log n as n → ∞ a.s.

Locations

  • arXiv (Cornell University) - PDF
  • The Annals of Applied Probability - View - PDF

Similar Works

Action Title Year Authors
+ Node Profiles of Symmetric Digital Search Trees 2017 Michael Drmota
Michael Fuchs
Hsien‐Kuei Hwang
Ralph Neininger
+ Profile and Height of Random Binary Search Trees 2004 Michael Drmota
+ PDF Chat On the Subtree Size Profile of Binary Search trees 2010 Florian Dennert
Rudolf Grübel
+ PDF Chat The height of a binary search tree: the limiting distribution perspective 2002 Charles Knessl
Wojciech Szpankowski
+ Node Profiles of Symmetric Digital Search Trees: Concentration Properties 2017 Michael Drmota
Michael Fuchs
Hsien‐Kuei Hwang
Ralph Neininger
+ Profile of Random Exponential Binary Trees 2017 Yarong Feng
Hosam M. Mahmoud
+ Node Profiles of Symmetric Digital Search Trees: Concentration Properties. 2017 Michael Drmota
Michael Fuchs
Hsien‐Kuei Hwang
Ralph Neininger
+ PDF Chat Node profiles of symmetric digital search trees: Concentration properties 2020 Michael Drmota
Michael Fuchs
Hsien‐Kuei Hwang
Ralph Neininger
+ Profiles of Random Trees: Limit Theorems for Random Recursive Trees and Binary Search Trees 2006 Michael Fuchs
Hsien‐Kuei Hwang
Ralph Neininger
+ PDF Chat Width and mode of the profile for some random trees of logarithmic height 2006 Luc Devroye
Hsien‐Kuei Hwang
+ k -Protected vertices in binary search trees 2013 Miklós Bóna
+ Limiting theorems for the nodes in binary search trees 2007 Jie Liu
Chun Su
Yu Chen
+ $k$-protected vertices in binary search trees 2013 Miklós Bóna
+ $k$-protected vertices in binary search trees 2013 Miklós Bóna
+ Paths vs. stars in the local profile of trees 2015 Éva Czabarka
László Á. Székely
Stephan Wagner
+ Paths vs. stars in the local profile of trees 2015 Éva Czabarka
László Á. Székely
Stephan M. Wagner
+ Paths vs. Stars in the Local Profile of Trees 2017 Éva Czabarka
László Á. Székely
Stephan M. Wagner
+ A NON-UNIFORM BOUND ON POISSON APPROXIMATION OF THE NUMBER OF SUBTREES OF SIZE k IN A RANDOM BINARY SEARCH TREE T_n 2016 Adchara Kumla
Angkana Boonyued
+ On the node structure of binary search trees 2000 F. M. Dekking
S. De Graaf
Ludolf Erwin Meester
+ The degree profile of Pólya trees 2011 Bernhard Gittenberger
Veronika Kraus