Orbital classification of geodesic flows on two-dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics

Type: Article

Publication Date: 1995-01-01

Citations: 36

DOI: https://doi.org/10.1007/bf01077048

Locations

  • Functional Analysis and Its Applications - View

Similar Works

Action Title Year Authors
+ Euler Case in Rigid Body Dynamics and Jacobi Problem About Geodesics on the Ellipsoid. Trajectory Isomorphism 2000 Alexey V. Bolsinov
А. В. ЀомСнко
+ The Euler problem in solid body dynamics and the Jacobi problem about geodesics on an ellipsoid are not topologically conjugate 1997 O E Orel
+ PDF Chat Topological properties of a rotation function in the integrable Jacobi problem for geodesics on ellipsoids 1999 O E Orel
+ Geodesics on the ellipsoid and monodromy 2007 Chris M. Davison
Holger R. Dullin
Alexey V. Bolsinov
+ Geodesics on the ellipsoid 1980 Horst KnοΏ½rrer
+ Geodesics for convex complex ellipsoids II 1995 Marek Jarnicki
Peter Pflug
+ Trajectory classification of integrable systems of Euler type in the dynamics of a rigid body 1993 Alexey V. Bolsinov
А. В. ЀомСнко
+ Integrable Geodesic Flows on Two-dimensional Surfaces 2004 A. V. Bolsinov
Анатолий Π’ΠΈΠΌΠΎΡ„Π΅Π΅Π²ΠΈΡ‡ Π€ΠΎΠΌΠ΅Π½ΠΊΠΎ
+ BΓ€cklund transformations for the Jacobi system on an ellipsoid 2017 A. V. Tsiganov
+ Geodesics for convex complex ellipsoids 1993 Marek Jarnicki
Peter Pflug
Rein Zeinstra
+ The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid 2014 А. В. ЀомСнко
S. S. Nikolaenko
+ 3.5 Geodesics on the Ellipsoid 1995 Wilhelm Klingenberg
+ Codimension of Isotropy Orbits in a Compact Riemannian Symmetric Space 1987 Shigeo Akiba
+ The dynamical group of Riemann ellipsoids 2008 G. Rosensteel
+ PDF Chat Symplectic embeddings of ellipsoids 2003 Felix Schlenk
+ Multiplicity of Lagrangian orbits on symmetric star-shaped hypersurfaces 2007 Fei Guo
Chungen LΔ±u
+ Special isoparametric orbits in Riemannian symmetric spaces 1995 L. VerhοΏ½czki
+ PDF Chat Parametric resonance and geodesics on an ellipsoid 1992 А. П. ВСсСлов
+ The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body 1995 Alexey V. Bolsinov
Π’Π°Π»Π΅Ρ€ΠΈΠΉ Π’Π°ΡΠΈΠ»ΡŒΠ΅Π²ΠΈΡ‡ Козлов
А. В. ЀомСнко
+ A topological classification of integrable geodesic flows on the two-dimensional sphere with an additional integral quadratic in the momenta 1993 Trung Nguyen
L. S. Polyakova

Works That Cite This (27)

Action Title Year Authors
+ Integrable billiards model important integrable cases of rigid body dynamics 2015 V. V. Fokicheva
А. В. ЀомСнко
+ The Fomenko-Zieschang invariants of nonconvex topological billiards 2018 V. V. Vedyushkina
+ PDF Chat ВопологичСскиС особСнности ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ случая Π‘ΠΎΠΊΠΎΠ»ΠΎΠ²Π° Π½Π° Π°Π»Π³Π΅Π±Ρ€Π΅ Π›ΠΈ $\mathrm{so}(3,1)$ 2014 Π”ΠΌΠΈΡ‚Ρ€ΠΈΠΉ ВячСславович Новиков
Dmitrii Vyacheslavovich Novikov
+ The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid 2014 А. В. ЀомСнко
S. S. Nikolaenko
+ Liouville classification of integrable geodesic flows in a potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle 2018 D. S. Timonina
+ Π˜Π½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ топологичСскиС Π±ΠΈΠ»Π»ΠΈΠ°Ρ€Π΄Ρ‹ ΠΈ эквивалСнтныС динамичСскиС систСмы 2017 Viktoriya Viktorovna Vedyushkina
А. В. ЀомСнко
+ Topological features of the Sokolov integrable case on the Lie algebra $ \mathrm{e}(3)$ 2011 Dmitrii Vyacheslavovich Novikov
+ PDF Chat Topological properties of a rotation function in the integrable Jacobi problem for geodesics on ellipsoids 1999 O E Orel
+ Description of singularities for system β€œbilliard in an ellipse” 2012 V. V. Fokicheva
+ Euler Case in Rigid Body Dynamics and Jacobi Problem About Geodesics on the Ellipsoid. Trajectory Isomorphism 2000 Alexey V. Bolsinov
А. В. ЀомСнко