On the anomalous thermal conductivity of one-dimensional lattices

Type: Article

Publication Date: 1998-08-01

Citations: 222

DOI: https://doi.org/10.1209/epl/i1998-00352-3

Abstract

The divergence of the thermal conductivity in the thermodynamic limit is thoroughly investigated. The divergence law is consistently determined with two different numerical approaches based on equilibrium and nonequilibrium simulations. A possible explanation in the framework of linear-response theory is also presented, which traces back the physical origin of this anomaly to the slow diffusion of the energy of long-wavelength Fourier modes. Finally, the results of dynamical simulations are compared with the predictions of mode-coupling theory.

Locations

  • EPL (Europhysics Letters) - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Heat conduction in 2d nonlinear lattices 1999 Andrea Lippi
Roberto Livi
+ PDF Chat Universality of anomalous one-dimensional heat conductivity 2003 Stefano Lepri
Roberto Livi
Antonio Politi
+ PDF Chat Anomalous energy diffusion in two-dimensional nonlinear lattices 2020 Jian Wang
Tian-Xing Liu
X.H. Zeng W.L. Luo
Xiu-Lian Xu
Nianbei Li
+ PDF Chat Self-consistent mode-coupling approach to one-dimensional heat transport 2006 Luca Delfini
Stefano Lepri
Roberto Livi
Antonio Politi
+ Simulation of heat transport in low-dimensional oscillator lattices 2015 Lei Wang
Nianbei Li
Peter Hänggi
+ PDF Chat Temperature-dependent divergence of thermal conductivity in momentum-conserving one-dimensional lattices with asymmetric potential 2019 G. R. Archana
Debashis Barik
+ PDF Chat Non-Fourier heat transport in nanosystems 2023 Giuliano Benenti
Davide Donadio
Stefano Lepri
Roberto Livi
+ PDF Chat Thermal conductivities of one-dimensional anharmonic/nonlinear lattices: renormalized phonons and effective phonon theory 2012 Nianbei Li
Baowen Li
+ Non-Fourier heat transport in nanosystems 2022 Giuliano Benenti
Davide Donadio
Stefano Lepri
R. Livi
+ Confinement and non-universality of anomalous heat transport and superdiffusion of energy in low-dimensional systems 2015 Yuriy A. Kosevich
A. V. Savin
+ PDF Chat Anomalous kinetics and transport from 1D self-consistent mode-coupling theory 2007 Luca Delfini
Stefano Lepri
Roberto Livi
Antonio Politi
+ PDF Chat Anomalous Heat Conduction and Anomalous Diffusion in One-Dimensional Systems 2003 Baowen Li
Jiao Wang
+ PDF Chat Thermal conductivity in dynamics of first-order phase transitions 2010 Vladimir V. Skokov
D. N. Voskresensky
+ Finite Thermal Conductivity in 1D Lattices 2000 Cristian Giardinà
Roberto Livi
Antonio Politi
Massimo Vassalli
+ PDF Chat Anomalous heat equation in a system connected to thermal reservoirs 2018 Priyanka
Aritra Kundu
Abhishek Dhar
Anupam Kundu
+ Length dependence of thermal conductivity by approach-to-equilibrium molecular dynamics 2016 Hayat Zaoui
Pier Luca Palla
Fabrizio Cleri
E. Lampin
+ Heat conduction in the nonlinear response regime: Scaling, boundary jumps, and negative differential thermal resistance 2010 Dahai He
Bao-quan Ai
Ho-Kei Chan
Bambi Hu
+ PDF Chat Normal heat conductivity in two-dimensional scalar lattices 2016 A. V. Savin
Vadim Zolotarevskiy
Oleg Gendelman
+ PDF Chat Studies of thermal conductivity in Fermi–Pasta–Ulam-like lattices 2005 Stefano Lepri
Roberto Livi
Antonio Politi
+ PDF Chat Nonequilibrium phonon mean free paths in anharmonic chains 2015 K. Sääskilahti
J. Oksanen
Sébastian Volz
Jukka Tulkki