On the spectrum of the Neumann Laplacian of long-range horns: a note on the Davies-Simon theorem

Type: Article

Publication Date: 1993-01-01

Citations: 7

DOI: https://doi.org/10.1090/s0002-9939-1993-1155600-7

Abstract

For a class of regions with cusps (e.g., <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega equals left-brace left-parenthesis x comma y right-parenthesis colon x greater-than 1 comma StartAbsoluteValue y EndAbsoluteValue greater-than exp left-parenthesis minus x Superscript alpha Baseline right-parenthesis right-brace comma 0 greater-than alpha greater-than 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mo>=</mml:mo> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>:</mml:mo> <mml:mi>x</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>y</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mi>exp</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>x</mml:mi> <mml:mi>α<!-- α --></mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo fence="false" stretchy="false">}</mml:mo> <mml:mo>,</mml:mo> <mml:mspace width="thickmathspace" /> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\Omega = \{ (x,y):x &gt; 1,|y| &gt; \exp ( - {x^\alpha })\} ,\;0 &gt; \alpha &gt; 1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) we show that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma Subscript a c Baseline left-parenthesis minus normal upper Delta Subscript upper N Superscript normal upper Omega Baseline right-parenthesis equals left-bracket 0 comma normal infinity right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>σ<!-- σ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>ac</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:msubsup> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mi>N</mml:mi> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> </mml:msubsup> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\sigma _{\operatorname {ac} }}( - \Delta _N^\Omega ) = [0,\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of uniform multiplicity one, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma Subscript s i n g Baseline left-parenthesis minus normal upper Delta Subscript upper N Superscript normal upper Omega Baseline right-parenthesis equals normal empty-set"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>σ<!-- σ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>sing</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:msubsup> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mi>N</mml:mi> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> </mml:msubsup> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi mathvariant="normal">∅<!-- ∅ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{\sigma _{\operatorname {sing} }}( - \Delta _N^\Omega ) = \emptyset</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma Subscript p p Baseline left-parenthesis minus normal upper Delta Subscript upper N Superscript normal upper Omega Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>σ<!-- σ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>pp</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:msubsup> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mi>N</mml:mi> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> </mml:msubsup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\sigma _{\operatorname {pp} }}( - \Delta _N^\Omega )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> consists of a discrete set of embedded eigenvalues of finite multiplicity.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Spectral multiplicity for 𝐺𝑙_{𝑛}(𝑅) 1992 J. M. Huntley
+ None 1999 A. Zabrodin
+ Dirichlet-Neumann bracketing for horn-shaped regions 1992 M. van den Berg
+ Spectral properties of Neumann Laplacian of horns 1992 E. B. Davies
Barry Simon
+ On the spectrum of the Dirichlet Laplacian for horn-shaped regions in Rn with infinite volume 1984 M. van den Berg
+ Spectral asymptotics of laplacians on horns: The case of a rapidly growing counting function 1998 Svetlana Boyarchenko
Sergei Levendorskiı̌
+ On the Torsion Function for Simply Connected, Open Sets in $$\mathbb {R}^2$$ 2024 Marco Berg
Dorin Bucur
+ The Elliptic Law 2014 Hoi H. Nguyen
Sean O’Rourke
+ $$L^p$$-spectral independence of Neumann Laplacians on horn-shaped domains 2019 Kouhei Matsuura
+ The Neumann laplacian on the cusp 1987 Werner Müller
+ On <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mo>∞</mml:mo></mml:msup></mml:math> norms of holomorphic cusp forms 2006 Honggang Xia
+ On Differentials 1949 E.G. Phillips
+ PDF Chat Perturbation theory for the Laplacian on automorphic functions 1992 Ralph S. Phillips
Peter Sarnak
+ None 1999 Andrew Hassell
Steve Zelditch
+ On the sup-norm of Maass cusp forms of large level 2010 Nicolas Templier
+ None 2004 Morten S. Risager
+ Spectral analogue of the law of the wall 2012 Gustavo Gioia
Carlo Zúñiga Zamalloa
Pinaki Chakraborty
+ Eigenvalue asymptotics of the Neumann Laplacian of regions and manifolds with cusps 1992 Vojkan Jakšić
S. A. Molčanov
Barry Simon
+ On exceptional eigenvalues of the Laplacian for Γ₀(𝑁) 2008 Xian‐Jin Li
+ PDF Chat The spectrum of the Laplacian for 1-forms 1974 Shûkichi Tanno