A quantitative version of the Besicovitch projection theorem via multiscale analysis

Type: Article

Publication Date: 2008-10-09

Citations: 31

DOI: https://doi.org/10.1112/plms/pdn037

Abstract

By using a multiscale analysis, we establish quantitative versions of the Besicovitch projection theorem (almost every projection of a purely unrectifiable set in the plane of finite length has measure zero) and a standard companion result, namely that any planar set with at least two projections of measure zero is purely unrectifiable. We illustrate these results by providing an explicit (but weak) upper bound on the average projection of the nth generation of a product Cantor set.

Locations

  • Proceedings of the London Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • DataCite API - View
  • Proceedings of the London Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF A Quantification of a Besicovitch Non-linear Projection Theorem via Multiscale Analysis 2022 Blair Davey
Krystal Taylor
+ A Quantification of a Besicovitch Nonlinear Projection Theorem via Multiscale Analysis 2021 Blair Davey
Krystal Taylor
+ A Quantification of a Besicovitch Nonlinear Projection Theorem via Multiscale Analysis 2021 Blair Davey
Krystal Taylor
+ PDF Chat Upper and lower bounds on the rate of decay of the Favard curve length for the four-corner Cantor set 2022 Laura Cladek
Blair Davey
Krystal Taylor
+ Upper and lower bounds on the rate of decay of the Favard curve length for the four-corner Cantor set 2020 Laura Cladek
Blair Davey
Krystal Taylor
+ A form of the Borel-Cantelli lemma 1985 Nadjib Bouzar
+ PDF Chat Recent Progress on Favard Length Estimates for Planar Cantor Sets 2014 Izabella Ɓaba
+ Scaling limits of random trees and planar maps 2011 Jean‐François Le Gall
Grégory Miermont
+ A counterpart of the Borel–Cantelli lemma 1980 F. Thomas Bruss
+ A counterpart of the Borel–Cantelli lemma 1980 F. Thomas Bruss
+ Quantitative Besicovitch projection theorem for irregular sets of directions 2022 Damian Dąbrowski
+ PDF A stronger form of the Borel-Cantelli Lemma 1983 Theodore P. Hill
+ Projections of random Cantor sets 1989 K. J. Falconer
+ Planar Lebesgue Measure 1950 Nat G. Martin
+ The Borel-Cantelli Lemma 2012 Tapas K. Chandra
+ PDF Borel-Cantelli sequences 2012 Michael Boshernitzan
Jon Chaika
+ On the Borel-Cantelli lemma 1972 Harry Cohn
+ PDF Chat Projections of Self-Similar and Related Fractals: A Survey of Recent Developments 2015 Pablo Shmerkin
+ Buffon needle lands in $Δ$-neighborhood of a 1-Dimensional Sierpinski Gasket with probability at most $|\logΔ|^{-c}$ 2009 Matt Bond
Alexander Volberg
+ The Borel-Cantelli Lemma 2012 Tapas K. Chandra