A relation between pointwise convergence of functions and convergence of functionals

Type: Article

Publication Date: 1983-07-01

Citations: 1893

DOI: https://doi.org/10.1090/s0002-9939-1983-0699419-3

Abstract

We show that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace f Subscript n Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mo>{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\left \{ {{f_n}} \right \}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a sequence of uniformly <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bounded functions on a measure space, and if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f Subscript n Baseline right-arrow f"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">→</mml:mo> <mml:mi>f</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{f_n} \to f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> pointwise a.e., then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="limit Underscript n right-arrow normal infinity Endscripts left-brace double-vertical-bar f Subscript n Baseline double-vertical-bar Subscript p Superscript p Baseline minus double-vertical-bar f Subscript n Baseline minus f double-vertical-bar Subscript p Superscript p Baseline right-brace equals double-vertical-bar f double-vertical-bar Subscript p Superscript p"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:munder> <mml:mo movablelimits="true" form="prefix">lim</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo stretchy="false">→</mml:mo> <mml:mi mathvariant="normal">∞</mml:mi> </mml:mrow> </mml:munder> </mml:mrow> <mml:mrow> <mml:mo>{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msubsup> <mml:mrow> <mml:mo symmetric="true">‖</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:mo symmetric="true">‖</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> <mml:mi>p</mml:mi> </mml:msubsup> <mml:mo>−</mml:mo> <mml:msubsup> <mml:mrow> <mml:mo symmetric="true">‖</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo>−</mml:mo> <mml:mi>f</mml:mi> </mml:mrow> <mml:mo symmetric="true">‖</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> <mml:mi>p</mml:mi> </mml:msubsup> </mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mo symmetric="true">‖</mml:mo> <mml:mi>f</mml:mi> <mml:mo symmetric="true">‖</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> <mml:mi>p</mml:mi> </mml:msubsup> </mml:mrow> <mml:annotation encoding="application/x-tex">{\lim _{n \to \infty }}\left \{ {\left \| {{f_n}} \right \|_p^p - \left \| {{f_n} - f} \right \|_p^p} \right \} = \left \| f \right \|_p^p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0 greater-than p greater-than normal infinity"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant="normal">∞</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">0 &gt; p &gt; \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This result is also generalized in Theorem 2 to some functionals other than the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm, namely <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="integral StartAbsoluteValue j left-parenthesis f Subscript n Baseline right-parenthesis minus j left-parenthesis f Subscript n Baseline minus f right-parenthesis minus j left-parenthesis f right-parenthesis EndAbsoluteValue right-arrow 0"> <mml:semantics> <mml:mrow> <mml:mo>∫</mml:mo> <mml:mrow> <mml:mo>|</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>j</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>−</mml:mo> <mml:mi>j</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo>−</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>−</mml:mo> <mml:mi>j</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo stretchy="false">→</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\int \left | {j({f_n}) - j({f_n} - f) - j(f)} \right | \to 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for suitable <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="j colon bold upper C right-arrow bold upper C"> <mml:semantics> <mml:mrow> <mml:mi>j</mml:mi> <mml:mo>:</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">C</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">→</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">C</mml:mi> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">j:{\mathbf {C}} \to {\mathbf {C}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and a suitable sequence <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace f Subscript n Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mo>{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\left \{ {{f_n}} \right \}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. A brief discussion is given of the usefulness of this result in variational problems.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A pointwise convergence theorem for sequences of continuous functions. 1971 Keith Schrader
+ PDF Chat Pointwise in terms of weak convergence 1974 J. R. Baxter
+ PDF Chat On weak convergence in 𝐻¹(𝑅^{𝑑}) 1994 Peter W. Jones
Jean-Lin Journé
+ A Relation Between Pointwise Convergence of Functions and Convergence of Functionals 2002 Haı̈m Brezis
Élliott H. Lieb
+ A Relation Between Pointwise Convergence of Functions and Convergence of Functionals 1983 Haı̈m Brezis
Élliott H. Lieb
+ Spaces on which every pointwise convergent series of continuous functions converges pseudo-normally 2004 Lev Bukovský
Krzysztof Ciesielski
+ PDF Chat On the convergence of ∑𝑐_{𝑛}𝑓(𝑛𝑥) and the Lip 1/2 class 1997 I. Berkès
+ PDF Chat Mean convergence and compact subsets of 𝐿₁ 1971 Benjamin Halpern
+ PDF Chat A characterization of epi-convergence in terms of convergence of level sets 1992 Gerald Beer
R. T. Rockafellar
Roger J.‐B. Wets
+ PDF Chat On weak* convergence in 𝐻¹ 1996 Joseph A. Cima
Alec Matheson
+ PDF Chat Almost everywhere convergence for sequences of continuous functions 1975 Keith Schrader
S. Umamaheswaram
+ PDF Chat Mean convergence in 𝐿^{𝑝} spaces 1972 W. P. Novinger
+ PDF Chat A nonstandard characterization of weak convergence 1978 Robert M. Anderson
Salim Rashid
+ Tauberian theorems on ℝ⁺ and applications 2024 Wei-Gang Jian
Hui-Sheng Ding
+ PDF Chat Weak and pointwise compactness in the space of bounded continuous functions 1981 Robert F. Wheeler
+ PDF Chat A measure theoretical subsequence characterization of statistical convergence 1995 Harry I. Miller
+ PDF Chat Convergence of sequences of distributions 1971 R. M. Dudley
+ PDF Chat Variation norm convergence of function sequences 1974 Randolph Constantine
+ PDF Chat Convergence of measurable random functions 1979 L. Grinblat
+ Convergence of Functions 2011 Rinaldo B. Schinazi